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About these lectures and lecture notes

These lecture notes were prepared as part of the European Summerschool in Quantum Chemistry
(ESQC) 2022. This is my first round of lecturing at ESQC, with all that implies. The lectures them-
selves necessarily covers much less than the lecture notes, due to the time constraints.

Given that ESQC is an intense summer school for quantum chemistry students, and only 5 lectures
are devoted to the broad theme “mathematics”, the content must be chosen carefully. The balance is
difficult: some students may not know much at all, having maybe only one or two undergraduate
courses of uncertain freshness, while others may be quite proficient in a wide range of mathematical
topics. I therefore do not assume too much mathematical background, and I certainly won’t present
theorems with full statements or proofs, but instead give a very broad overview. I think that most
students will find something they can understand and like.

Successful research in quantum chemistry invariably requires delving into mathematics: from the
theory of complex functions, integration, linear algebra, Fourier analysis, through topics like calculus
of variations, functional analysis, optimization theory, and numerical analysis. The goal of the lectures
is not to teach mathematics, but to give the students some tools for where to look for information on
relevant topics, in addition to a rough idea about what different concepts are about, and how they are
interconnected. The exercises that accompany the lectures are varied, from basic exercises training
the fingers to do matrix-vector multiplication, so small projects, also with some programming. There
should be something for everyone.

Unfortunately, it is not possible to learn mathematics by watching a lecturer state definitions and
some facts. Understanding comes with extensive experience, careful reading and understanding of
proofs, doing exercises, and practice. One should therefore consider these lectures as a starting point.
One should not worry if the material seems difficult, or if what being said is hard to understand.
Instead, one should do the exercises oney can, collaborate with co-students, and take note of topics
that seem interesting. When the school is over, at least one should have some overview of how topics
are connected and used in quantum chemistry research.
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The fundamentals: Sets and numbers

1.1 Introduction

1.1.1 Why learn mathematics?

Doing successful research in quantum chemistry invariably requires the researcher to use mathemati-
cal tools. These range from elementary topics like real and complex analysis, and linear algebra, but,
especially in method development of manybody theory, topics like functional analysis, convex analy-
sis, nonlinear partial differential equations, and so on, pop up. Moreover, computer implementation of
quantum chemistry methods require a good command of numerical analysis and optimization theory.
Furthermore, even if the researchers ambition is not to do advanced research in quantum chemistry
method development, application of the methods also require an understanding of where they come
from and how they work.

1.1.2 What is mathematics?

In science, we build models to describe observations made by experiments. The language of models
is mathematics. Mathematics itself can be said to model nature: The integers model counting of
discrete objects, the real numbers model lengths and time intervals, and euclidean geometry models
(non-relativistic) space-time. Functions of real variables model observable quantities. Hilbert spaces
model the states of matter in the quantum mechanical regime. Partial differential equations model
natural laws. Mathematics is also used to interpret the outcome of experiments via statistics, i.e., the
dichotomy between theory and experiment is not so clear.

Isn’t it strange, and wonderful, that mathematics is able to accurately describe reality? Isn’t it
fascinating, that humans have made mental models built on logic, that is able to model reality? Isn’t it
strange, that whenever we need to refine our scientific models, then mathematics is malleable enough
to provide the correct ones, and even make predictions of what new experiments may observe?

But what is mathematics? Here is a quote from the Wikipedia article on Mathematics:1

Mathematics (from Ancient Greek μαθημα; máthēma: ‘knowledge, study, learning’) is
an area of knowledge that includes such topics as numbers (arithmetic and number the-
ory), formulas and related structures (algebra), shapes and the spaces in which they are
contained (geometry), and quantities and their changes (calculus and analysis). Most
mathematical activity involves the use of pure reason to discover or prove the proper-
ties of abstract objects, which consist of either abstractions from nature or—in modern
mathematics—entities that are stipulated with certain properties, called axioms. A math-
ematical proof consists of a succession of applications of some deductive rules to already
known results, including previously proved theorems, axioms and (in case of abstraction
from nature) some basic properties that are considered as true starting points of the theory
under consideration.

1Wikipedia. http : / / en .wikipedia . org /w / index . php? title=Mathematics&oldid=1103972043. [Online; accessed
17-August-2022]. 2022.
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Thus, mathematics is a kind of tower built with the human capacity for abstract thought alone.
Theories are built on more fundamental theories, branching out like a tree. But is there something at
the root? Can we know for sure that no mistake has been made, destroing swathes of centuries-old
work in a moment, once the mistake is discovered?

In the late 19th and early 20th century, the quest for a common foundation ofmathematics, based on
mathematics alone, led to a crisis: the foundational crisis of mathematics.2 Paradoxes like the famous
Russell’s paradox questionedwhethermathematics could be formulated consistently withmathematics
alone. Most of us are used to mathematical sets being rather informally defined, e.g., via a list,

N = {0, 1, 2, 3, . . .}, (1.1)

or via some condition,
C = {x | x is a cat} (1.2)

While this informal point of view (“naive” set theory) is often fine (mathematicians use it all the
time), Russell’s paradox shows what can go wrong. A certainly intuitive “fact” about sets is the axiom
schema of comprehension due to Frege (1893):3

If φ is a property, then there exists a set Y = {X | φ(X)} of all elements having property φ.

However, this principle is false:

Russell’s paradox (1902): By a set, we mean any collection of objects — for example the
set of all even integers or the set of all saxophone players in Brooklyn. The objects that
make up a set are called its members or elements. Sets may themselves be members of
sets; for example the set of all sets of integers has sets as its members. Most sets are not
members of themselves; the set of cats, for example, is not a member of itself because the
set of cats is not a cat. However, there may be sets that do not belong to themselves—
perhaps, for example, a set containing all sets. Now, consider the set A of all those sets X
such that X is not a member of X. Clearly, by definition, A is a member of A if and only
if A is not a member of A. So, if A is a member of A, then A is also not a member of A;
and if A is not a member of A, then A is a member of A. In any case, A is a member of A
and A is not a member of A.

Thus, mathematicians found that they cannot always rely on their intuition.
Today, the foundational crisis of mathematics is mostly settled. Virtually all of mathematics can

be formulated in terms of Zermelo–Fraenkel (ZF) set theory with the axiom of choice added (ZFC).
Example: In ZF theory, the natural numbers is defined recursively in terms of the empty set ∅ = {}

(due to von Neumann):

0 := ∅, 1 := {∅}, 2 := {∅, {∅}} (1.3)
3 := {∅, {∅}, {∅, {∅}}} (1.4)
... (1.5)

n + 1 = S (n) = n ∪ {n} (1.6)

The set N is now defined as the smallest set that contains all n while being closed under the successor
function S . The system 〈N, 0, S 〉 is now a model of the Peano axioms for natural numbers and their

2Wikipedia. http://en.wikipedia.org/w/index.php?title=Foundations%20of%20mathematics&oldid=1097188669.
[Online; accessed 17-August-2022]. 2022; J. Ferreiros. In: The Princeton Companion to Mathematics, p. 142. ISBN:
978-0-691-11880-2.

3K. Ciesielski. Set Theory for the Working Mathematician. London Mathematical Society Student Texts. Cambridge
University Press, 1997. ISBN: 978-0-521-59441-7 978-0-521-59465-3.
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arithmetic. The Peano axioms define natural numbers and their arithmetic operations recursively in
terms of a successor function S acting on natural numbers to produce the next natural numbers. Thus,
the natural numbers and their axioms can be exhibited in terms of sets and their axioms.

In a similar manner, axioms for the rational numbers Q can be built on the Peano axioms. And so
on.

Recommended reading

This book is a widely recommended text on
Zermelo–Fraenkel set theory with the ax-
iom of choice (ZFC). It describes, in partic-
ular, encodings of “all” classical mathemati-
cal structures in terms of ZFC set theory.

1.2 Preliminary notes

1.2.1 Basic set notation

A set S is an unordered collection of its elements, e.g.,

S = {1, 2, 3}. (1.7)

When x is an element, we write x ∈ S . Here, 1 ∈ S but 0 < S . There is no limit to the number of
elements a set can have. In particular ∅ = {} denotes the empty set. An infinite set is the set of natural
numbers.

When all elements of one set S are also elements of another set T , we write S ⊂ T .
From two sets S and T we can construct new sets: The union S ∪ T consists of all elements of

either set. The intersection S ∩ T consists of the elements common to both sets. The set difference
S \ T consists of S with the elements of T taken away.

We can also specify sets using a condition on a set S , i.e., a rule P(x) for every x ∈ S that evaluates
to true or false. We then define

T = {x ∈ S | P(x)} (1.8)
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to denote the set of those x ∈ S such that P(x) is true. We can also use more complicated conditions,
by either using English language, or mathematical symbols. For example,

P = {1
p
| p is prime}, (1.9)

C0[0, 1] = { f : [0, 1]→ R | f is continuous} (1.10)

The cardinality of a set, |S |, is the number of elements of the set S . The cardinality of the natural
numbers is denoted ℵ0 (“aleph naught”). Two sets have the same cardinality if and only if they can be
mapped one-to-one onto each other.

It is common to denote a set of sets a family of sets. Mathematically, there is (almost) no difference,
since all mathematical objects are sets, but in everyday maths usage, we usually do not consider a
number as a set, for example.

We can build cartesian products of sets. The cartesian product S × T is the set of ordered pairs
(x, y), where x ∈ S and y ∈ T . Note that an ordered pair is not the same as the set {x, y}, which is
unordered. Similarly, cartesian products of n sets is an ordered n-tuple. A useful example is R3 =

R × R × R = {(x, y, z) | x, y, z ∈ R}, that is, space.
Basic set operations include:

1. Union: A ∪ B = {x | x ∈ A or x ∈ B}

2. Intersection: A ∩ B = {x | x ∈ A and x ∈ B}

3. A \ B = {x ∈ A | x < B} = B∁

A mnemonic for remembering what is union and what is section, is that in the union, the symbol is a
cup, that gathers everything from A and B.

1.2.2 Functions

A function or map f : S → T from a set S (the domain) to a set T (codomain) is a rule that assigns
to every x ∈ S precisely one element f (x) ∈ T . The set { f (x) | x ∈ S } is a subset of T , and called the
range of f .

The domain is the set of possible input, the codomain is what can possibly come out, and the range
is what actually comes out.

If for every y ∈ T there is an x ∈ S such that f (x) = y, i.e., all elements of T are reached, we say
that f is surjective, or onto. If f (x) = f (x′) implies that x = x′, then f is injective or one-to-one. If f
is both surjective and injective, we say that f is bijective, or one-to-one and onto.

1.3 Numbers

1.3.1 The integers, the rationals, and the reals

The natural numbers are the counting numbers,

N = {0, 1, 2, . . .}. (1.11)

It is a set of cardinality ℵ0, the “smallest” infinity. The integers are the numbers (“Zahlen”)

Z = {. . . ,−3,−2,−1, 0, 1, 2, . . .}, (1.12)
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which has the same cardinality as N. Next, the rational numbers (“quotients”),

Q =

{
p
q
| p, q ∈ Z, q , 0

}
. (1.13)

The cardinality is again ℵ0.
[Exercise: prove that these sets have the same cardinality, and that the reals have a greater cardi-

nality.]
Next up is the set of real numbers, but the precise definition of these in terms of Q is subtle. Let

us therefore be very imprecise, and denote the reals by the set of all infinite decimal expansions,

R = { infinite decimal expansions of numbers } (1.14)

= R =
{
(−1)s10p × 0.a1a2a3a4 · · · | s ∈ {0, 1}, p ∈ Z, ∀ j ∈ N, a j ∈ Z10

}
, (1.15)

where Z10 = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}. The symbol “∀” means “for all”. Strictly speaking, this defini-
tion of R does not make sense, since we have to define what an infinite decimal expansion means. The
correct answer is that it is a limit of rational number approximations, or rather an equivalence class of
such.

We will not dig deeper into the real numbers. It is common to simply view the reals in an informal
manner as a continuous infinite line, with the integers and rationals marked off, and the “gaps” de-
noting irrational numbers being those numbers that need infinitely many decimal places in any base,
i.e., those reals which are not in Q.

The real numbers have a special property: They are complete in the Cauchy sense. Informally, all
sequences that “ought to converge” actually converges. We will talk more about this later.

The basic properties of the real numbers are usually formalized as a theorem:

Theorem 1

There is a unique number system called the real number system which is a complete ordered
field.

By “ordered” we mean that it is always true that a ≤ b or b ≤ a for any a, b ∈ R. By “unique”
we mean that all other constructions that satisfy the axioms of fields, and is ordered, can be put into
a one-to-one correspondence, this correspondence being compatible with the rules of multiplication,
addition, and the ordering. In fact, this theorem justifies the mental picture of the reals as, indeed, the
“real line”.

These number sets are fairly easy to get a grasp on, and we note that they are included in one
another, written

N ⊂ Z ⊂ Q ⊂ R. (1.16)

The sets Q and R are also fields. Fields are abstractions of, well, numbers, with the following axioms:
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Definition 1: Field

Let F be a set, together with binary operations + (addition) and · (multiplication) such that the
following holds:

1. Commutativity of addition: x + y = y + x

2. Associativity of addition: x + (y + z) = (z + y) + z

3. Identity element for addition: There is a zero element 0 ∈ F such that 0 + x = x for all
x ∈ F

4. Inverses for addition: For every x ∈ F there is a y ∈ F such that x + y = 0.

5. Commutativity of multiplication: x · y = y · x

6. Associativity of multiplication: x · (y · z) = (z · y) · z

7. Identity element for multiplication: There is a unit element 1 such that 1 · x = x

8. Inverse for multiplication: For every x , 0 there is a y such that x · y = 1.

9. Distributive law: x · (y + z) = x · y + x · z.

In short, numbers in a field can be manipulated using all the usual operations of real numbers.
What distinguishes the rationals from the reals, is that the reals are complete.

1.3.2 Complex numbers

Besides R, the complex numbers C are extremely important for us. The complex numbers are defined
in terms of the real numbers by adjoining to R a special element i that satisfies

i2 = −1. (1.17)

Adding this element alone does not generate a field, because a field must be closed under addition and
multiplication. The smallest field that contains R and i is the set

C = {a + ib | a, b ∈ R}, (1.18)

which is also a field, but no longer an ordered field!
Important unary operations: Let z = a + ib ∈ C. Real part, Re z = a. Imaginary part, Im z = b.

Complex conjugate, z̄ = z∗ = a − ib. Modulus, |z| =
√

a2 + b2.

Example 1: Multiplication and addition of complex numbers

Given two complex numbers z1 = x1 + iy1 and z2 = x2 + iy2. We compute the sum of the
complex numbers:

z1 + z2 = (x1 + iy1) + (x2 + iy2) = (x1 + x2) + i(y1 + y2). (1.19)

We compute the product:

z1z2 = (x1 + iy1)(x2 + iy2) = x1x2 − y1y2 + i(y1x2 + x1y2), (1.20)

where we used i2 = −1.
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Figure 1.1: Geometric interpretation of addition and multiplication of complex numbers. Left: Addi-
tion Z = z1 + z2 of z1 = x1 + iy1 and z2 = x2 + iy2. Right: multiplication Z = z1 + z2.

1.3.3 Geometric interpretation

A geometric interpretation of the complex numbers was first given by the Norwegian cartographer and
mathematician CasparWessel, who used complex numbers in his cartographywork. The interpretation
is as follows: Draw a two-dimensional coordinate system. The horizontal axis is the real line, while
the vertical axis is the purely imaginary numbers iR. A point in the plane with coordinates (x, y) now
corresponds to the complex number z = x + iy. The rules of addition become the usual plane vector
addition rules (componentwise addition/putting the tip of one arrow at the end of another arrow), while
the rules of multiplication becomes multiplication of the moduli (lengths). and addition of the angles,
between the points and the positive real line. See Figure 1.1.

1.3.4 Fundamental theorem of algebra

The complex numbers set C a kind of Columbi egg to solve the problem that a polynomial of degree
n over the real numbers may not have a full set of n roots.

Theorem 2: Fundamental theorem of algebra

Every polynomial p of degree n over C have exactly n roots in C, i.e., there is a nonzero C ∈ C
and n numbers ri ∈ C, such that

p(z) = C(z − r1)(z − r2) · · · (z − rn).

Descartes used the term “imaginary” about the complex numbers. It was not because it was imagi-
native or similar, but rather in a pejorative sense: these numbers provide solutions to the root equations,
but the roots are useless, since they don’t exist anyway.

Well, do the complex numbers exist or not? Maybe he would have changed his mind if he saw the
geometric interpretation – who knows?
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Linear algebra

2.1 Finite dimensional vector spaces

Linear algebra is perhaps the most important tool for modern science: quantum mechanics, data anal-
ysis, machine learning, …All use linear algebra in one way or another.

Recommended reading

This was my curriculum in the first linear al-
gebra course I took. I think it is a very good
book, and highly readable. What it lacks,
is the consideration of general finite dimen-
sional linear vector spaces.
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Recommended reading

An online textbook in linear algebra by
Robert A. Beezer can be found here: http:
//linear.ups.edu/. It is free, and also has great
sets of exercises. PDF versions here: http:
//linear.ups.edu/download.html

Recommended reading

This book by the great Paul Halmos is old,
by very comprehensive. I find it quite read-
able, and have used it many times. I would
consider the level to be more advanced than
Fraleigh and Beauregard.
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2.1.1 Euclidean space

Much of what we do in quantum chemistry is in the context of the spaces Rn or Cn. These are exam-
ples of vector spaces. We will define general vector spaces later, but for the moment it is easier to
concentrate on Fn.

Definition 2: Euclidean space

Let F be either R or C. Let Fn be the set of n-tuples of F-numbers x = (x1, · · · , xn), on which
we define the following operations: For x, y ∈ Fn define

x + y ∈ Fn, (x + y)i = xi + yi addition, (2.1)

for all 1 ≤ i ≤ n. and for any α ∈ F,

αx ∈ Fn, (αx)i = αxi scalar multiplication. (2.2)

We also define the Euclidean inner prooduct

〈x, y〉 = x̄ · y =
∑

i

x̄iyi ∈ F Euclidean inner product (2.3)

and the Euclidean norm

‖y‖ =
√
〈x, x〉 ∈ R. Euclidean norm (2.4)

The two first axioms give Fn the structure of a vector space, while the two next axioms define
a topology. We will see the formal definition of general vector spaces later. We will say more on
topology later.

The boldface symbol for vectors in Euclidean space is very common in linear algebra. Less com-
mon, but not unusual, is the notation r⃗. This notation is more common in R2 and R3. It is also common
to simply use plain letters u, v, etc., for vectors. Some like to put a tilde under the letters, u

∼
.

It is common to write vectors in Fn as column vectors, i.e.,

x =


x1

x2
...

xn

 . (2.5)

It is also common to simply list the elements as a tuple,

x = (x1, x2, · · · , xn). (2.6)

You will see both versions in the literature, and one must get used to the different notations.
A basis is a set of vectors in which we may linearly expand every vector. We begin with the

standard basis:
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Definition 3: Standard basis

The standard basis for Fn is the set of vectors {ei | 1 ≤ i ≤ n} such that

(ei) j = δi j, Kronecker delta symbol (2.7)

i.e.,

e1 =


1
0
...
0

 , e2 =


0
1
...
0

 , etc. (2.8)

It now follows that for every x ∈ Fn,

x =
n∑

i=1

xiei. (2.9)

You should convince yourself by doing calculations, that

xi = 〈ei, x〉 . (2.10)

2.1.2 Visualization in the plane

TODO: Illustrate vector addition, scalar multiplication, using arrows in the plane. Compare with
componentwise addition and scalar multiplication.

2.1.3 Linear transformations

A very important class of functions on vector spaces are linear transformations, also known as linear
maps or functions.

Definition 4: Linear transformation

Let A : Fn → Fm be a function. We say that A is a linear transformation if it conserves the
vector addition and scalar multiplication laws, i.e., for all x, y ∈ Fn

A(x + y) = A(x) + A(y), (2.11)

and for all α ∈ F,
A(αx) = αA(x). (2.12)

If a n = m, i.e., the special case when domain and codomain both are the same space, we often
say that A is a linear operator

Any linear transformation A : Fn → Fm is determined uniquely by a matrix, i.e., there are unique
coefficients Ai j ∈ F, 1 ≤ i ≤ m, 1 ≤ j ≤ n, such that

A(x)i =

n∑
j=1

Ai jx j. (2.13)
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The first index i on Ai j is called the row index, and the second index j the column index. Thus, we
think of A as a table:

A =


A1,1 A1,2 · · · A1,m

A2,1 A2,2 · · · A2,m
...

...
. . .

...
An,1 An,2 · · · An,m

 (2.14)

Linear transformations form a vector space in a natural way (see later for definition):

(A + B)(x) := A(x) + B(x), (αA)(x) := αA(x). (2.15)

In fact this vector space can be thought of as Fnm, since the matrix elements behave just like nm vector
components under addition and scalar multiplication. On the other hand, a matrix has a shape, so
merely saying “A ∈ Fnm” is ambigous.

Example 2

[
1 4 6

]
∈ R1×3


1 4
−3

√
3

8 0

 ∈ R3×2
[
0
π

]
∈ R2×1 (2.16)

Definition 5: Matrix

Formally, a matrix A ∈ M(n,m,F) = Fn×m is a function A : {1, 2, · · · , n} × {1, 2, · · · ,m} → F.
Informally, A is a table with n rows and m columns with entries in F.

The space Fn is identified with M(n, 1,F) = Fn×1, the set of column vectors.

If we have two linear maps A ∈ M(n,m;F) and B ∈ M(m, o,F), the composition of the maps is
again a linear map, and must have a matrix! That is, there must be some C ∈ M(n, o,F) such that for
all x ∈ Fo,

A(B(x)) = C(x). (2.17)

The solution is the matrix product:

Definition 6: Matrix product

Let A ∈ M(n,m,F) and B ∈ M(m, o,F). Then the matrix product C = AB ∈ M(n, o;F) is
defined by the formula

Cik =

n∑
j=1

Ai jB jk. (2.18)

The matrix product satisfies:

1. A(BC) = (AB)C associativity

2. (A + B)C = AC + BC and A(B +C) = AB + AC distributivity

However, the matrix product is not commutative, i.e., AB , BA in general!

Note that the only instances where the matrix product C = AB is defined is when the column
dimension of A and row dimension of B match.
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We observe that Fn = Fn×1 can be thought of as matrices, i.e., linear maps x : F → Fn. Therefore,
A(x) is a matrix product, and it is customary to drop the parenthesis, and just write A(x) = Ax. From
now on we will do this.

Definition 7: Dual space

The dual space of Fn = M(n, 1,F) is the set of linear functionsω : Fn → F, i.e., the set M(1, n,F)
of row vectors. The dual space is often written (Fn)′.

The distinction between a vector space and its dual is subtle, but in finite dimensional Euclidean
space things become very simple: Dual space is the space of row vectors.

Definition 8: Matrix transpose

For A ∈ M(n,m,F) with matrix elements Ai j, the matrix transpose AT ∈ M(m, n,F) is defined
by the matrix elements (AT )i j = A ji, i.e., the table is reflected along the diagonal.

Example 3

 0 1
−1 i
−2 π


T

=

[
0 −1 −2
1 i π

]
(2.19)

x1

x2

x3


T

=
[
x1 x2 x3

]
(2.20)

For all matrices A, (AT )T = A.

Since a matrix A ∈ M(n,m,F) is a linear map from Fn to Fm, the matrix transpose is a unique linear
transformation from Fm to Fn. This transformation satisfies,

∀ω ∈ (Fn)′, x ∈ Fm, ωAx = (ATω)x. (2.21)

In this sense, the transpose of a matrix is an associated linear map on the dual space.
We do not need the notion of inner product to have the notion of dual. They are independent.

However, since the inner product associates a number with two vectors, they are related. We note that

〈x, y〉 = xT y.

and moreover that
∀y ∈ Fn, x ∈ Fm, 〈y, Ax〉 = 〈AT

y, x〉 (2.22)

This leads to the definition

Definition 9: Hermitian adjoint

For A ∈ M(n,m,F) with matrix elements Ai j, the Hermitian adjoint AH ∈ M(m, n,F) is defined
by AH = AT , i.e., the table is reflected along the diagonal and complex conjugated. In the case
F = R transpose and Hermitian conjugation are the same.
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Example 4

A =

1 + i 2 − 2i
1 0
0 0

 AH =

[
1 − i 1 0

2 + 2i 0 0

]
(2.23)

For all matrices compatible with mutiplication,

(AB)H = BHAH (2.24)

A result which is non-trivial in the infinite dimensional case, is Riesz’ representation theorem, that
relates a Hilbert space and its dual. We mention it here, since it is easy to visualize in the finite di-
mensional case, and since you may come across this theorem in the more abstract infinite dimensional
setting:

Theorem 3: Riesz' representation theorem

To every x ∈ Fn there is an associated unique ωx ∈ (Fn)′ given by

ωx = 〈x, ·〉 = xH. (2.25)

Conversely, to every ω ∈ (Fn)′ there is a unique vector xω = ωH. In other words, the Hermitian
conjugate is a one-to-one mapping between Fn and (Fn)′.

The one-to-one mapping between Fn and its dual (Fn)′ is antilinear in the case when F = C. A
transformation B : Fn → Fm is antilinear if B(x + y) = B(x) + B(y) but B(αx) = ᾱB(x).

2.1.4 General vector spaces

The spaces Fn are archetypal finite-dimensional vector spaces. However, it is very useful to consider
abstract vector spaces that are not manifestly the same as Fn.

Here is the definition of a general vector space. Such spaces may have any dimension, even
infinite:
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Definition 10: Vector space

A vector space over the field F is a set V together with a binary vector addition + : V × V → V
and scalar multiplication · : F × V → V such that, for all x, y, z ∈ V and all α, β ∈ F, the
following axioms are true:

1. There exists a 0 ∈ V such that 0+ x = x for all x ∈ V identity element for addition

2. x + (y + z) = (x + y) + z associativity for addition

3. x + y = y + x commutativity for addition

4. There exists x′ such that x + x′ = 0 inverse element for addition

5. (αβ) · x = α · (β · x) compatibility of scalar and field multiplications

6. 1 · x = x identity for scalar multiplication

7. (α + β) · x = α · x + β · x distributivity of scalar multiplication

8. α · (x + y) = α · x + α · y distributivity of scalar multiplication

These are quite a few axioms, but this stems from the fact that a vector space structure is the com-
bination of two general algebraic structures: an abelian group (addition), amd a ring homomorphism
from F to the ring of endomorphisms of the given abelian group. For the example V = Fn, some of
the axioms are not necessary to state, since they follow from the definition of elementwise operations.
Can you identify these extra axioms?

Vector spaces are very general, but we will be interested in finite dimensional spaces for the mo-
ment. In Fn, the dimension was defined by n. But we need to characterize it abstractly, without
reference to Fn as example.

We introduce the notion of linear independence and dimension.

Definition 11: Linear independence

Let V be a vector space, and L ⊂ V a subset. The set L is linearly indepdenent if for any finite
subset {vi | 1 ≤ i ≤ k} ⊂ L, we have

k∑
i=1

aivi = 0 =⇒ ai = 0 for all i

The dimension of V is the cardinality of the largest linearly independent subset of V .

From this, we read that V has finite dimension n if and only if one can find at most n linearly
dependent elements.

Note that linear independence in particular means that one of the vi cannot be decomposed in terms
of the other v j.

Not all vector spaces are finite dimensional! Consider for example the space of all functions
f : S → R, where S is an infinite set. The dimension of this space is the cardinality of S , which can
be pretty big!

Consider now the space Fn, with the standard basis. The standard basis vectors are all linearly
independent in the sense of the definition above (see the Exercises). Any vector x ∈ Fn can be uniquely
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written

x =
n∑

i=1

xiei. (2.26)

Thus, there cannot be subsets of Fn that are both linearly independent and have more elements than
the standard basis! Thus, the dimension of Fn is n.

We apply these notions to general finite-dimensional spaces. Note that there is no notion of a
“standard basis” in general.

Definition 12: Basis

Let V be a vector space of finite dimension n. A basis is a linearly independent set of vectors
{b1, · · · , bn}, with exactly n elements.

Theorem 4

If B = {b1, · · · , bn} is a basis for a the vector space V , dim(V) < +∞, then any v ∈ V can be
uniquely decomposed as

v =
n∑

i=1

vibi. (2.27)

The proof is not difficult: If there was some vector v ∈ V that could not be decomposed like this,
then B ∪ {v} is linearly independent with n + 1 elements, but this is not possible.

Definition 13: Dual basis

Let V be a vector space of finite dimension n, and let V ′ be its dual space. Let B = {b1, · · · , bn}
be a basis, and let b̃i ∈ V ′ be defined by

b̃i(b j) = δi j.

This basis B̃ = {b̃1, · · · , b̃n} for V ′ is uniquely given by the basis B for V , and is called the dual
basis to V (of V ′).

We now make the connection between finite dimensional vector spaces and Fn.
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Theorem 5: Isomorphism between finite dimensional spaces

Let V be a vector space over F of finite dimesion n, and let B = {bi} be a basis for V . Then, to
every v ∈ V there is a unique x ∈ Fn such that

v =
n∑

i=1

xibi. (2.28)

Conversely, any x ∈ Fn describes a unique v ∈ V by the same formula. Thus, V and Fn are in
one-to-one correspondence,

Moreover, let v and w have expansion coefficients x and y, respectively. Then, v + w has
coefficients x + y, and αv has coefficients αx, for any α ∈ F.

In other words, V and Fn are isomorphic as vector spaces: There is a (basis-dependent) linear
function U : Fn → V such that

v = Ux,

and such that U has an inverse as a function, which is also linear.

This may seem trivial. However finite-dimensional vector spaces are not always easily seen as
identical to Fn.

Example 5: Space of polynomials of bounded degree

Let V be the space of polynomials of degree less than or equal to n, p ∈ V if and only if
p : F→ F has the form

p(x) = a0 + a1x1 + · · · anxn. (2.29)

A basis, which may be considered “standard”, is the basis of monomials xk, for 0 ≤ k ≤ n. The
dimension of V is n + 1.

But we have not defined an inner product on the space of polynomials! Thus, it does not
make sense to simply say that V ′ is identified with V . On the other hand, pick n + 1 distinct
points x j ∈ F, and consider the operation of evaluation at x j,

ω j(p) := p(x j). (2.30)

Thenω j ∈ V ′ is a linear function on p in a natural way. One can show that all theω j are linearly
independent, and thus form a basis for V ′! But this basis does not satisfy ω j(xk) = δ jk, so it is
not dual to the monomial basis. But we can transform them by taking linear combinations to a
dual basis.

TODO:Write exercise on the polynomials and the dual basis
TODO:Write up example of C*-algebra

Theorem 6: Linear transformations between finite dimensional spaces

Let V and W be vector spaces over F of finite dimensions n and m, respectively. Let Â : V → W
be a linear transformation, i.e., Â(v + v′) = Âv + Âv′, and Â(αv) = αÂv. We denote by L(V,W)
the set of such linear functions, which is a vector space, cf. (2.15).

The linear vector spaces L(V,W) and M(m, n,F) are isomorphic as vector spaces. That is,
given bases for V and W, there is a linear one-to-one correspondence between L(V,W) and
M(m, n,F).
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We prove this as follows:
Let B = {bi} be a basis for V , and C = {ci} a basis of W, with dual basis {c̃i}.
Let v ∈ V , and w = Âv ∈ W, with coefficients v ∈ Fn and w ∈ Fm, respectively. Then

wi =

n∑
j=1

Ai jv j, (2.31)

with
Ai j = c̃i(Âb j). (2.32)

Conversely, any matrix A ∈ Fm×n defines a unique Â ∈ L(V,W).
This simple result is striking, in that for the finite dimensional case, and given that we have chosen

a basis, we can think in terms of Fn and M(n,m,F). All finite dimensional vectors spaces are “the
same”, and also the linear transformations will be “the same” by way of their matrix representations.

2.2 Inner product spaces

What actually distinguish finite dimensional spaces is their topology, i.e., how points are considered
to be close to each other. Note that we did not use any inner product to make correspondences between
a vector space V and Fn. Indeed, there is no inner product on a general finite dimensional vector space
V .

Example 6: Space of planets

Suppose we characterize a planet by its mass, diameter, and average distance from the sun, all
measured in SI units. These three numbers are gathered in a vector u = [u1, u2, u3], but the
components refer to different units of measurements. Does it make sense to define the inner
product between two planets as u · v = u1v1 + u2v2 + u3v3?

If we supply an inner product on V , we say that V is an inner product space, and since V is finite
dimensional, it will also be complete and hence a Hilbert space. TODO: Refer to functional analysis
section

Definition 14: Inner product

Let V be a vector space. An inner product 〈·, ·〉 : V × V → F is a map which satisfies the
following axioms:

1. 〈x, x〉 ≥ 0, 〈x, x〉 = 0 if and only if x = 0 non-negative

2. 〈x, αy + βz〉 = α 〈x, y〉 + β 〈x, z〉 linearity

3. 〈αy + βz, x〉 = ᾱ 〈y, x〉 + β̄ 〈z, x〉 conjugate linearity

4. 〈x, y〉 = 〈y, x〉 hermiticity

Let V be a finite-dimensional Hilbert space, and let B = {bi} be a basis for V . Consider arbitrary
vectors v =

∑n
i=1 bivi and v′ =

∑n
i=1 biv′i , and compute the inner product:

〈v, v′〉 =
n∑

i=1

n∑
j=1

x̄i 〈bi, b j〉 x′j ≡
n∑

i=1

n∑
j=1

x̄iS i jx′j = xHS x′. (2.33)
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The matrix S is often called the overlap matrix of the basis B. We see that that since we start with
an inner product on V , the latter equation defines an inner product on Fn – but it is not the Euclidean
inner product!

However, if S has matrix elements δi j, then we get the Euclidean inner product.

Definition 15: Orthonormal basis

Let V be a finite dimensional Hilbert space, and let B = {bi} be a basis. We say that B is an
orthonormal basis if, for all i and j, 〈bi, b j〉 = δi j.

In finite dimensional Hilbert spaces (and indeed infinite dimensional separable Hilbert spacs),
orthonormal bases are not very special: they always exist, and can be constructed usingGram–Schmidt
orthogonalization.

Theorem 7: Existence of orthonormal basis

Any finite dimensional Hilbert space V has an orthonormal basis.

Theorem 8

Let V be a vector space of finite dimension n, and let B = {bi} be an orthonormal basis.
For any v ∈ V ,

v =
∑

i

vibi, vi = 〈bi, v〉 . (2.34)

Let Â ∈ L(V) be a linear operator. The matrix of Â has elements

Ai j = 〈bi, Âb j〉 . (2.35)

Definition 16: Hermitian adjoint

Let V , W be finite-dimensional Hilbert spaces, and let Â ∈ L(V,W). The Hermitian adjoint Â†

is an operator in L(W,V) defined by the criterion that for all v ∈ W and all w ∈ W,

〈w, Âv〉 = 〈Â†w, v〉 . (2.36)

For a v ∈ V , we also define v† ∈ V ′ by the criterion that for all v′ ∈ V ,

v†v′ = 〈v, v′〉 . (2.37)

For a ω ∈ V ′ we define ω† ∈ V by the criterion that for all v ∈ V ,

ωv = 〈ω†, v〉 (2.38)

24



Remark 1

This definition is compatible with the Hermitian adjoint of matrices. The definition of v† and
ω† is a one-to-one mapping between V and V ′, just like for vectors in Fn. In particular (v†)† = v,
and the inner product can be written

〈v,w〉 = v†w. (2.39)

The matrix element of an operator Â : V → W becomes

〈w, Âv〉 = w†Âv = (Â†w)†v. (2.40)

Thus, just like for matrices, row vectors and column vectors, whenever the product XY is de-
fined, then (XY)† = Y†X†.

We are now in the situation, that, using an orthonornal basis, inner products are preserved when
moving to coefficient space: If u, v ∈ Fn are the components of u, v ∈ V in some orthonormal basis,
then

〈u, v〉 = 〈u, v〉 = uHv. (2.41)

This means that, as inner product spaces, there is nothing that distinguishes the Hilbert spaces V from
Fn.

Theorem 9: Finite dimensional Hilbert spaces are basically all the same

Finite dimensional Hilbert spaces over F of dimension n are all isometrically isomorphic to Fn,
and hence to each other. The word “isometricall” means that the inner product can be considered
the same for both spaces.

Note that spaces over R and C are still different!

Remark 2

In order to study (the vector space structure of) finite dimensional Hilbert spaces, including the
linear operators over these spaces, it suffices to Fn and matrices M(n,m,F).

This is a very important fact!

2.2.1 Linear subspaces

We generalize the notion of a linear subspace to general vector spaces spaces (also infinite dimensional
ones):

Definition 17: Linear subspace

Let V be a vector space over F. A subset W ⊂ V is a linear subspace if it is closed under vector
addition and scalar multiplication, i.e., if

∀w ∈ W, αw ∈ W, w1 + w2 ∈ W, (2.42)

and if 0 ∈ W.

Linear subspaces are also vector spaces.
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In the finite dimensional case V , we must have that W ⊂ V is finite dimensional, too. In particular
W has a basis of vectors bi ∈ V , 1 ≤ m ≤ n, and m is the dimension of W.

Conversely, any linearly independent set {bi} of m vectors of V define a subspace of all possible
linear combinations, written:

W = span{b1, . . . , bm}. (2.43)

2.2.2 Dirac's bra-ket notation

Dirac introduced the bra-ket notation in his celebrated book on quantum mechanics. The notation,
which is very useful, has some problems when one works in infinite dimensions. The interested
student can have a look at the paper by Gieres TODO: add citation.

In the present case, we will use the bra-ket notation, since we work in finite dimensions, and since
it is very intuitive and transparent.

Bras and kets The basic premise is that we write the inner product with a bar instead of a comma:

〈u|v〉 := 〈u, v〉 (2.44)

The idea is now that this is a scalar product between a vector v ∈ V and a dual element u† ∈ V ′,
denoted

〈u|v〉 := 〈u, v〉 = u†v. (2.45)

We now define
|v〉 := u ∈ V (“ket”) 〈u| := |u〉† ∈ V ′ (“bra”). (2.46)

Thus, we interpret the bra-ket as a product between a bra and a ket,

〈u|v〉 = 〈u| · |v〉 . (2.47)

Remark 3

The abstract juggling we did earlier with the daggers can be summarized as follows: We may
think of kets as column vectors, and bras as row vectors. The dagger and the Hermitian adjoint
are essentially the same operations:

|u〉 ←→ u ∈ Fn×1 (2.48)

〈u| ←→ uH ∈ F1×n (2.49)

Orthonormal basis Let B = {bi} denote an orthonormal basis for V . We denote the corresponding
kets simply by |i〉. We may use any name we like, and simply using the index reduces clutter. Recall
the expansion

|u〉 =
n∑
i

ui |i〉 , (2.50)

and that the coefficients were
ui = 〈bi, u〉 = 〈i|u〉 . (2.51)

Inserting this expression gives

|u〉 =
n∑
i

〈i|u〉 |i〉 =
n∑
i

|i〉 〈i| · |u〉 . (2.52)
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We can pull |u〉 outside the sum, to get

|u〉 =
 n∑

i

|i〉 〈i|
 |u〉 = |u〉 . (2.53)

Thus, the identity operator can be written using an orthonormal basis as

1 =

n∑
i

|i〉 〈i| . (2.54)

More generally, consider the expression
|i〉 〈 j| . (2.55)

When acting on a basis vector, we see that it takes | j〉 and transforms it to |i〉. Watch this, where we
use the 1 trick:

Â = 1Â1 =
n∑
i

n∑
j

|i〉 〈i|Â| j〉 〈 j| =
n∑
i, j

|i〉 Ai j 〈 j| . (2.56)

We have derived the fact that the set {|i〉 〈 j| : 1 ≤ i, j ≤ n} is a basis for the linear space of operators
over V!

This statement can of course be generalized to operators between different spaces V and W with
their own orthonormal basis.

Another important operator tool is the following construction: Let B = {b1, · · · , bm} ⊂ V , with
dim(V) = n, be a set of vectors. They may or may not be linearly independent. Let |i〉 be a standard
basis vector for Fm. Consider the operator B̂ : Fm → V given by

B̂ =
m∑

i=1

|bi〉 〈i| . (2.57)

Let now x ∈ Fm, and compute

B̂ |x〉 =
m∑

i=1

|bi〉 xi, (2.58)

that is B̂ generates linear combinations. One can think of B̂ as a generalized matrix, where each
“column” is a ket,

B̂ = [|b1〉 |b2〉 · · · |bm〉]. (2.59)

Since V is n-dimensional, we can think of each ket as an n-dimensional vector in Fn, i.e., B̂ is like a
matrix in Fn×m.

2.3 Matrices

We know that all linear transformations between finite dimensional spaces are naturally expressed
with matrices. Therefore, the manipulation of matrices and understanding their behavior is essential
for any quantum chemist.

2.3.1 Column space, row space, rank

A matrix A ∈ Fn×m has a set of columns, the jth column is denoted A:, j and a set of rows, the ith row
denoted Ai,:. This notation can remind us about the Python or Matlab notations for taking slices.
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Example:

A =

1 + i 2 − 2i
1 0
0 0

 , A:,1 =

1 + i
1
0

 , A:,2 =

2 − 2i
0
0

 , A1,: = [1+i, 2−2i], A2,: = [1, 0], A3,: = [0, 0].

(2.60)
Note the comma notation on the rows. This is for clarity.

The significance of the columns is the following: Let ai = Ai,: be the ith column. We write

A = [a1, a2, · · · , an].

We now act with A on some x ∈ Fn, and it is straightforward to see, that the answer is:

Ax = a1x1 + a2x2 + · · · + anxn. (2.61)

Thus: The result is a linear combination of the columns, the coefficient being given by x.
Similarly, the rows are significant when acting to the left on some row vector.

Definition 18: Column space

For a matrix A = [a1, · · · , an] ∈ Fn×m , the column space is the set of all linear combinations of
the columns ai. This is also denoted the range or image of A, since it is the set of all vectors Ax.

The column space is a linear vector space, written

span{a1, a2, · · · , an}. (2.62)

The rank of the matrix is the dimension of the column space.
The row space is defined similarly.
(It is a fact that the dimension of the row space is the same as the dimension of the column

space.)

Facts: Any linear subspace of Fn is the column space of some matrix (not unique). The columns
form a basis for the subspace.

2.3.2 Systems of linear equations

Consider a matrix A ∈ M(n,m,F). Consider the linear equation: Find x ∈ Fn such that, for a given
y ∈ Fm,

Ax = y. (2.63)

This is one of the basis uses of matrices: to solve linear systems of equations.
Written out in terms of matrix elements and vector components,

A11x1 + A12x2 + · · · + A1nxn = y1 (2.64)
A21x1 + A22x2 + · · · + A2nxn = y2 (2.65)

... (2.66)
Am1x1 + Am2x2 + · · · + Amnxn = ym (2.67)

Given this setup, several things can happen:

1. No solutions exist. Thismay only happen ifm ≥ n, andwe say that the equations are inconsistent
or overdetermined.
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2. Exactly one solution exists for every y. If m > n, some equations can be eliminated and can be
reduced to a square system with n = m.

3. An infinite number of solutions exist, and we say that the system is underdetermined. This may
happen both for n , m and n = m.

Suppse A is square, and that x can be found for any y ∈ Fn, then this solution defines a linear map
Ã : Fn → Fn such that

ÃAx = Ãy = x.

This map is the inverse function of A. Thus, it is natural to write Ã = A−1 for the solution operator.
In some cases, there is no unique solution. This happens precisely when the rank of A is smaller

than n. The set of x such that Ax = 0 is the null space of A. This is a linear subspace. Its dimension
is the nullity.

Theorem 10: Rank/nullity theorem

Let A ∈ Fm×n. Rank of A + nullity of A equals n.

2.3.3 Gaussian elimination

A classic way to solve a linear system of equations is by gaussian elimination. Given a linear equation
Ax = y, we expand it in order to see better:

A11x1 + A12x2 + · · · + A1n = y1 (2.68)
A21x1 + A22x2 + · · · + A2n = y2 (2.69)

... (2.70)
An1x1 + An2x2 + · · · + Ann = yn (2.71)

(2.72)

Thus, Ai j is the coefficient of x j in the ith equation, the right-hand side of which is yi. Now, we can
produce an equivalent linear system by multiplying equations by (nonzero) numbers or adding pairs
of equations. That is taking linear combinations of equations.

In gaussian elimination, one proceeds systematically. First, we write down the augented matrix

B = [A|y] ∈ Fn×(n+1). (2.73)

We then use using elementary row operations to bring the system to row echelon form.

Definition 19: Row echelon form

A matrix T ∈ Fn×m is on row echelon form if Ti j = 0 whenever i > j, and if the leading
coefficient (first nonzero) of row number i is always to the left of the leading coefficient of row
number i + 1. The leading coefficient is also called a pivot

The elementary matrix operations are:

• Multiply a row by a nonzero number

• Swap two rows

• Add one row to another (includes subtraction by first multiplying by nonzero scalar)
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Example 7

This matrix is in row echelon form. The pivots are in squares.
1 2 0 0
0 2 −4 −1
0 0 0 1
0 0 0 0

 (2.74)

We say that two matrices are equivalent if they are related by one or more elementary operations,
written A ∼ A′.

The leading coefficients can all be taken to be 1, by a final scaling operation if necessary.
When the row echelon form has been obtained, wewill be able to find a unique solution to the linear

system if and only if the diagonal of the row echelon form is nonzero. Assuming the diagonal elements
to be 1, solving the system is trivial by backsubstitution: the last equation says yn =something, and by
substituting into the n − 1th equation, we get yn−1, etc.

Alternatively, we may bring the matrix to the form B = [I|x] by further elementary operations.
To compute the matrix inverse, we start with the augmented matrix B = [A|I] and use elementary

operations to bring it to the form B̃ = [I|A−1].
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Example 8

Solve the linear system

x1 + x2 + x3 = 0, x1 − 2x2 + 3x3 = 1, 4x1 − x3 = 2. (2.75)

Augmented matrix:

B =

1 1 1 0
1 −2 3 1
4 0 −1 2

 (2.76)

We begin by subtracting the first row from the second, and 4 times the first row from the third:

B ∼

1 1 1 0
0 −3 2 1
4 0 −1 2

 ∼
1 1 1 0
0 −3 2 1
0 −4 −5 2

 (2.77)

We now multiply the second row by −1/3 and the third by −1/4:

B ∼

1 1 1 0
0 1 −2/3 −1/3
0 1 5/4 −1/2

 (2.78)

Finally, we subtract row 2 from row 3 to get the row echelon form

B ∼

1 1 1 0
0 1 −2/3 −1/3
0 0 23/12 −1/6

 (2.79)

We simplify a bit and multiply the last row by 12/23

B ∼

1 1 1 0
0 1 −2/3 −1/3
0 0 1 −12/138

 (2.80)

Solving the linear system is now easy: x3 = −12/138 from the last equation. We insert back
into the second equation:

x2 = (2/3)x3 − 1/3, (2.81)

and finally
x1 = −x2 − x3. (2.82)

2.3.4 Matrix powers

We may compose A with itself, which gives a matrix power,

AAx = A2x.

Higher powers are defined similarly.
How about negative powers?
The matrix inverse defined above satisfies

AA−1 = A−1A = I,
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where I is the common notation for the identity matrix, with elements Ii j = δi j. The identity matrix is
such that Ix = x for all x ∈ Fn.

We define A−k = (A−1)k, and we now have, with the definition A0 = I,

Ak+l = AkAl = AlAk, ∀k, l ∈ Z.

2.3.5 Classes of operators

We now consider some important classes of operators.

Definition 20

Let V be a Hilbert space over F of finite dimension n, and let Â ∈ L(V) be a linear operator. We
say that A is …

1. Hermitian if 〈u, Âv〉V = 〈Âu, v〉V for all u, v ∈ V . Equivalently, the matrix of Â in any
orthonormal basis satisfies AH = A.

2. Unitary if it preserves inner products, i.e., 〈u, v〉V = 〈Âu, Âv〉V . Equivalently, the matrix
satisfies AH = A−1.

3. Normal if it commutes with its adjoint, ÂÂ† = Â†Â

4. Invertible if Â−1 exists

2.3.6 The eigenvalue decomposition

Given a linear operator Â ∈ L(V), consider the eigenvalue equation: Find λ ∈ F and a nonzero v ∈ V
such that

Âv = λv. (2.83)

We call λ an eigenvalue, v an eigenvector, and (λ, v) an eigenpair. Clearly, if v is an eigenvector, then
αv is an eigenvector for any α , 0. So an eigenvector is defined only up to a multiplicative constant.

Suppose (λ′, v′) is another eigenpair. Then,

〈u|Â|v〉 = λ 〈u|v〉 = λ′ 〈u|v〉 . (2.84)

If λ′ , λ, then we must have 〈u|v〉 = 0. So if we have a set of n different eigenvalues, then we can
build an orthonormal basis of eigenvectors! This is significant, because it tells us that there exists a
basis for V in which Â is very easy to describe!

All normal operators have such orthonormal bases:
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Theorem 11: Spectral theorem for normal operators

Suppose Â ∈ L(V) is a normal operator. Then, there exists an orthonormal basis {v1, · · · , vn}
such that

Â =
n∑

i=1

|vi〉 λi 〈vi| . (2.85)

In terms of the matrices relative to some orthonormal basis, there exists a unitary matrixU such
that

A =
n∑

i=1

uiλiuH
i = UΛUH (2.86)

where ui is the ith column of U, and where Λ is a diagonal matrix with elements Λi j = λiδi j

2.3.7 Singular value decomposition

One of the most striking matrix factorizations is the singular-value decomposition (SVD). It decom-
poses a matri A as follows:

Theorem 12: Singular value decomposition

Let A ∈ M(n,m,F) be a matrix, and let k = min(n,m). There exists k singular values σi ≥ 0
and k left singular vectors ui, and k right singular vectors vi, such that

A =
k∑

i=1

uiσivH
i = UΣVH,

where U = [u1, · · · ,uk], V = [v1, · · · , vk], Σ = diag(σ1, · · · , σk). Equivalently,

Avi = σiui.

The rank of A is the number of nonzero singular values. The decomposition is unique if all the
singular values are distinct.

Interpreting the SVD: V†x decomposes x along k orthonormal vectors. The matrix Σ scales the
vectors by a constant amount, and finally U maps rotates the scaled vectors to a new orthonormal set
of k vectors.

Since the decomposition always exists, the SVD is a universal geometric interpretation of any
matrix!

It is customary to arrange the singular values in descending order. If we truncate the expansion
after ℓ < k terms,

Aℓ =

ℓ∑
i=1

uiσiv†i , (2.87)

we obtain an approximation to Awhich is optimal in the so-called Frobenius, or Hilbert–Schmidt norm
on matrices,

‖A‖F =
∑

i j

|Ai j|2


1/2

, (2.88)

i.e., the space of matrices M(n,m,F) is viewed as Euclidean nm-dimensional space, a Hilbert space.
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The SVD is a powerful tool in data analysis, since it identifies the most important components of
a matrix.
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Topologies on vector spaces

3.1 The notion of a topology

In our discussion of Euclidean space and finite-dimensional Hilbert spaces in Sec. 2.1.4, we had an
inner product at our disposal. The inner product could be used to define a norm, that measured length.
Appealing to the linear structure of the space, we could measure distances, d(x, y) = ‖x − y‖.

A distance measure gives us the ability to talk about closeness between points, i.e., a topology. In
the field of topology, one makes these concepts abstract. In particular, we get axioms for open and
closed subsets. These sets are used, for example, to define various concepts of functions f : U → V
being continuous.

Not all topologies are equal. By carefully choosing the topology when describing a problem, one
can obtain results on convergence of, say, a quantum chemical calculation as the number of basis
functions increase.

3.2 Metric space hierarchy

We are now motivated to look closer at metric spaces, and open and closed sets in metric spaces. In
this section, we look at metric spaces, and these will be the most general topological spaces we discuss.

A vector space with a topology is called a topological vector space (TVS).

3.2.1 Inner product spaces

Definition 21: Inner product

Let V be a vector space. An inner product 〈·, ·〉 : V × V → F is a map which satisfies the
following axioms:

1. 〈x, x〉 ≥ 0, 〈x, x〉 = 0 if and only if x = 0 non-negative

2. 〈x, αy + βz〉 = α 〈x, y〉 + β 〈x, z〉 linearity

3. 〈αy + βz, x〉 = ᾱ 〈y, x〉 + β̄ 〈z, x〉 conjugate linearity

4. 〈x, y〉 = 〈y, x〉 hermiticity

We say that the pair (V, 〈·, ·〉) is an inner-product space.

3.2.2 Normed spaces

In Euclidean space, the length of a vector v ∈ Fn is ‖v‖ =
√
〈v, v〉. This is but one out of many

possible norms on Euclidean space. Norms are abstractions of the notions of length of elements of
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vector spaces:

Definition 22: Norm

Let V be a vector space. A norm ‖ · ‖ : V → R+ = [0,+∞[ is a function that satisfies the
following axioms:

1. ‖x‖ ≥ 0, and ‖x‖ = 0 if and only if x = 0. positivity

2. ‖αx‖ = |α|‖x‖ absolute homogeneity

3. ‖x + y‖ ≤ ‖x‖ + ‖y‖ triangle inequality

The pair (V, ‖ · ‖) is called a normed vector space.

You should convince yourself that the axioms indeed correspond to what we expect from a useful
concept of length.

3.2.3 Angles between vectors

Returning to the inner product, we can now obtain some intuition using the associated norm. The inner
product measures angles between vectors. Indeed, any inner product satisfies the Cauchy–Schwarz
inequality:

Lemma 1: Cauchy--Schwarz inequality

Let (V, 〈·, ·〉) be an inner product space, and let ‖ · ‖ be the induced norm. Then, for any x, y ∈ V ,
it holds that

〈x, y〉 ≤ 〈x, x〉1/2 〈y, y〉1/2 = ‖x‖ ‖y‖. (3.1)

The Cauchy–Schwarz inequality implies that

0 ≤ | 〈x, y〉 |‖x‖y‖ ≤ 1 (3.2)

so that we may define the angle between the vectors as the unique θ ∈ [0, π/2] such that

cos θ =
| 〈x, y〉 |
‖x‖‖y‖ . (3.3)

Note in particular that if 〈x, y〉 = 0, then θ = π/2, coincidingwith the notion of x and y being orthogonal
to each other.

3.2.4 Metric spaces

Norms can be used to measure distance in Euclidean space and in inner product spaces in general.
Given two elements u, v ∈ Fn, the distance is given by ‖u − v‖. This is a special case of a metric,
whose definition gives axioms that encapsulate the notion of distance:
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Definition 23: Metric

Let M be a set. A function f : S × S → R is a metric if it satisfies the following axioms:

1. d(x, y) = d(y, x) symmetry

2. d(x, y) ≥ 0, and d(x, y) = 0 if and only if x = y positivity and nondegeneracy

3. d(x, y) ≤ d(x, z) + d(z, y) triangle inequality

The pair (M, d) is a metric space. If M is a vector space, we say that (M, d) is a metric vector
space.

In this definition, note that we are not starting with a vector space, since none of the axioms actually
use vector space properties of the set!

Again, make sure that you understand how the axioms embody essential properties expected from
a distance measure.

3.2.5 Metric spaces include normed spaces and inner product spaces

When a vector space V has an inner product, a norm, or a metric, we say that V is a topological vector
space. The concept of a topological space is more general than a metric space (which is the most
general space we are going to define in these notes). A topological space axiomates the concept of
open sets, while for metric spaces, the open sets are defined in terms of the metric. (The open sets
defined using the metric satisfies the axioms of general topology.)

Before we move on to the topology of metric spaces, we merely observe that everything we say is
also valid in normed vector spaces and inner product spaces due to the hierarchical manner in which
these are defined:

An inner product space is a normed space, and a normed space is a metric space.

3.3 Some topological concepts

A topology gives structure to a point set, e.g., which points are nearby other points. This allows the
notion of convergence of sequences and continuous functions. With the vector space structure, we can
also study differentiation from a very general point of view.

3.3.1 Sequences and limits

Definition 24: Sequence

Let S be a set. A sequence is a function a : N → S , i.e., an infinite “vector” (x1, x2, x3, · · · ),
with x j = a( j) ∈ S . It is common to suppress the actual function a and simply write “(x j) is a
sequence in S ,” or “let (x j) ⊂ S be a sequence,” or other similar variants.

Warning: Do not confuse the notation x j here with the jth component of a vector in Fn! If we have
a sequence in Fn, we will have n sequences of F-numbers, (x j)i ∈ F.

Sometimes, the index is not a natural number, but some other countable set. This still defines a
sequence, since countable sets can be be brought into 1-to-1 correspondence with the natural numbers.
Somtimes the index is even more general, such as a real mumber ε that goes to zero from above. In
topology this is called a net. We will not discuss nets here.
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If (M, d) is a metric space, we can study the convergence of the sequence.

Definition 25: Convergent sequence

Let (M, d) be a metric space, and let (xi) ⊂ M be a sequence. If there is some x ∈ M such that
for all ε > 0, there is an Nε such that i > Nε implies d(xi, x) < ε, we say that (xi) is convergent,
and that it converges to x, written xi → x ∈ M, or limi→+∞ xi = x.

TODO: Elaborate with pictorial examples
Which sequences converge?

Definition 26: Cauchy sequence

We say that (xi) is Cauchy convergent if for every ε > 0 there is an Nε ∈ N such that i, j > Nε

implies
d(xi, x j) < ε. (3.4)

Thus, the elements of the sequence get closer and closer in a uniform manner. After the index Nε,
no two elements ever get further apart than a distance ε.

Such sequences should converge: It is inescapable that the distance between successive elements
approach zero the further into the sequence one gets. In fact, the opposite assertion is true:

Theorem 13

If a sequence converges, it is Cauchy convergent.

Note that Cauchy convergence does not refer to the potential limit. Only elements at various
positions in the sequence are referred to in the definition.

Example 9: Non-convergent Cauchy sequence

Consider a sequence (xi) ∈ Q of rational numbers. Let x =
√

2 ∈ R \Q (an irrational number),
and let xi be the decimal expansion of x to i significant digits after the decimal points. Thus,
x1 = 1.4, x2 = 1.41, etc. If this sequence converges, it should be to x. It is straightforward to
see that for i > j, |xi− x j| = |(x− x j)−(x− i j)| ≤ |x− x j|+ |x− xi| ≤ 10−i+10− j ≤ 2 ·10− j. So if we
choose ε > 0, find j such that 2 · 10− j < ε. We then see that (xi) is a Cauchy sequence. But the
sequence does not converge to a rational number, beacuse we know the limit to be irrational.

The example demonstrates that a space can be incomplete, in that it lacks certain limits.

Definition 27: Complete metric space

We say that (M, d) is (Cauchy) complete if every Cauchy sequence is convergent.

From the construction of the real numbers R, Cauchy completeness is built in as a fundamental
property. Using the Euclidean metric in Rn, one can then show the very important fact that:

Theorem 14

Euclidean space Fn is complete.
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Figure 3.1: The open ball Bε(x) of radius ε around x.

Why is completeness important? The completeness of a metric space ensures that limits of Cauchy
sequences exist within the space, providing a solid foundation for many important theorems and ap-
plications in analysis, physics, and applied mathematics, including quantum chemistry. Without com-
pleteness, the analysis would be prone to gaps and inconsistencies.

3.3.2 Topologically important sets

The metric defines ε-balls:

Definition 28: ε-ball

Let (M, d) be a metric space. Let x ∈ M. The ε-ball around x is the set

Bε(x) = {y ∈ M | d(x, y) < ε}. (3.5)

The ε-ball is the archetypal open set, and illustrated in Fig. 3.1. In Fig. 3.2 subsets that are open,
closed, and neither open nor closed are illustrated. Open sets are needed to understand the concepts
of limits, continuity, and differentiation of functions.
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Example 10: Two metrics on R2

Let us consider R2 with the usual Euclidean metric. Denote by x = (x1, x2) and y = (y1, y2) two
points in R2. Then the Euclidean distance between these points is

dEuclidean(x, y) = [(x1 − y1)2 + (x2 − y2)2]1/2.

Furthermore, the open ball of radius r around the origin is the set

Bε(0,Euclidean) =
{
(x, y) ∈ R2 | x2 + y2 < ε2

}
.

This is the geometric description of the interior of a circle with radius ε centered at the origin.
Let us consider an alternative metric, the Manhattan metric, named so because it is the

relevant metric from the point of view of a taxicab driving along perfectly straight streets that
cross each other at right angles:

dManhattan(x, y) = |x1 − y1| + |x2 − y2|.

The open ball of raius ε around the origin is now:

Bε(0,Manhattan) =
{
(x, y) ∈ R2 | |x| + |y| < ε

}
.

The Euclidean ε-ball is illustrated below to the left, while the Manhattan unit ball is illus-
trated to the right:

Open sets can be used to redefine convergence of sequences.

Theorem 15: Convergence in terms of open sets

Let (xi) ⊂ M be a sequence in a metric space (M, d). Then xi converges to x ∈ M, if and only if
for every ε-ball Bε(x), (xi) is eventually in that ball, i.e., there is an NU ∈ N, such that xi ∈ Bε(x)
whenever i > NU .

The phrase “for all ε-balls” can be replaced with “for all neighborhoods of x”.
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Figure 3.2: Illustration of open set (right), closed set (left), and neither open nor closed (middle) in
the plane R2. The dashed lines indicate boundaries that are not included in the set, while the full lines
indicate boundaries that are in the set. The rightmost set is open, since for every point in the set there
is a finite distance to the edge. The leftmost set includes the boundary. If we select a point on the
boundary, any ε-ball will be partially outside the set. On the other hand, the complement of the set is
open, since it has no boundary! The middle set contains parts of its boundary, but not all, so it cannot
be closed.

Definition 29: Neighborhood

Let (M, d) be a metric space, and let x ∈ M. A neighborhood N of x is any N ⊂ M that contains
x.

Definition 30: Open and closed sets, complements

Let (M, d) be a metric space. A subset S ⊂ M is open if, for every x ∈ S , there exists an ε-ball
completely contained in S .

The complement of S is defined as

S ∁ = {x ∈ M | x < A} = M \ S . (3.6)

We say that S is closed if S ∁ is open. (There are sets that are both open and closed, and
neither open nor closed.)

Definition 31: Boundary and interior

A point x ∈ A is called a boundary point if every neighborhood of x both contains a point in A
and a point in A∁.

The boundary ∂A is the set of boundary points of A.
The interior of A is the set of all points x ∈ A such that for some ε > 0, Bε(x) ⊂ A.
The closure of A is the smallest closed set containing A, and is equal to A ∪ ∂A.

The concept of Cauchy completeness can be reformulated using open and closed sets:

Definition 32: Complete metric space

A metric space (M, d) is complete if for any open set U ⊂ M (such as an ε-ball Bε(x) ⊂ M),
then cl(U) ⊂ M.
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Intuitively, the boundary of every open ball should be contained in the set.
The following definition/theorem stresses the link between completeness and closed sets:

Definition 33: Limit points

Let (M, d) be a metric space, and let S ⊂ M be a subset. The closure cl(S ) is the set of limit
points of S : If (xi) ⊂ S is a sequence, and if lim xi = x ∈ M, then in actually x ∈ cl(S ).
Conversely, if x ∈ cl(S ), there exists a sequence in S that converges to x. The closure cl(S ) is
the smallest set that contains all the limit points of S .

3.3.3 Continuity

Take a function f : [0, 1] → R, where [0, 1] = {x ∈ R | 0 ≤ x ≤ 1}. You should be familiar, at least
intuitively, with the notion of f being continuous, perhaps differentiable (at a point or everywhere), or
even smooth. These notions are defined using topology, since we somehow need to study the behavior
of f in the vicinity of some x ∈ [0, 1].

Definition 34: Continuity

Let (M1, d1) and (M2, d2) be complete metric spaces. Let a function f : M1 → M2 be given,
and let x ∈ M1, y = f (x) ∈ M2. We say that f is continuous at x if for every ε > 0, there is
a δ > 0, such that f [Bδ(x)] ⊂ Bε(y). Equivalently, for every neighborhood V2 of y, there is a
neighborhood V1 of x such that f [V1] ⊂ V2.

This may seem complicated, but using words, the definition simply says: f is continuous at x if
points that are nearby f (y) in the image come from points nearby x. For our function f : [0, 1] → R,
this states that you should be able to draw the graph without removing the pen from the paper.

That picture is useful, but not entirely accurate – when you move the pen, this must be in a smooth
manner! But there are continuous functions that would require, say, infinite acceleration or an “infinite
amount of ink.”

TODO:Make illustration of Weierstrass function

3.3.4 Compactness

An important notion in metric spaces is that of compactness.

Definition 35: Compact sets

Let (M, d) be a metric space, and let S ⊂ M. We say that S is compact if every sequence
(xi) ⊂ S has a convergent subsequence. That is, there is an increasing function f : N → N of
indices such that y j := x f (i) is a convergent sequence, y j → y ∈ S . Usually, subsequences are
written informally as y j = xi j .

Compactness may be hard to get a grasp on from the get go, but the intuition is that S behaves a
little like a finite set. There is not too much “room” for the sequence xi to wander around. Eventually,
it must revisit the same neighborhood (of y) infinitely many times, getting infinitely closer.

An important consequence of compactness is the following:
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Figure 3.3: Illustration of the concept of continuity, using a function f : R2 → R2 as an example. For
every neighborhood N, taken to be an ε-ball, there shoud be an open set U such that f [U] ⊂ N. The
ball N becomes smaller and smaller, but we can always find a correspondingU. Then, f is continuous.

Theorem 16: Images of compact sets

If f : M → N is a function between metric spaces, and if S ∈ M is a compact set, then f [S ] ⊂ N
is compact.

In finite dimensional vector spaces with a metric, compactness becomes easy to characterize:

Theorem 17: Compact sets in finite dimensions

If (M, d) is a finite dimensional metric vector space, then every compact subset is closed and
bounded. The converse is also true.

3.3.5 Move me

TODO:Move this section!
In Figure 3.3, the concept of a continuous function is illustrated, using a function f : R2 → R2 as

an example.

Theorem 18

Let f : Fn → Fm be a function. Thus, we have m functions fi : Fn → F, fi(x) = fi(x1, · · · , xn).
Then f is continuous at x ∈ Fn if and only if all the components fi are continuous in all the n
variable separately.
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3.3.6 Limits and continuity

In Euclidean space, we are assigned a topology defined by the norm. That is, we canmeasure distances,

d(x, y) = ‖x − y‖. (3.7)

The metric (here, our norm) defines ε-balls:

Definition 36: ε-ball

Ket x0 ∈ Rn. The ε-ball around x0 is the set

Bε(x0) = {x ∈ Rn | ‖x − x0‖ < ε}. (3.8)

The ε-ball is the archetypal open set. Open sets are needed to understand the concepts of limits,
continuity, and differentiation of functions.

Definition 37: Open and closed sets

A subset A ⊂ Rn is open if, for every x ∈ A, there exists an ε-ball completely contained in A.
The complement of A is defined as

A∁ = {x ∈ Rn | x < A} = Rn \ A. (3.9)

We say that A is closed if A∁ is open.

[Illustration]

Definition 38: Neghborhood

Let x ∈ Rn. A neighborhood of x is any open subset that contains x.

Definition 39: Boundary and interior

A point x ∈ A is called a boundary point if every neighborhood of x both contains a point in A
and a point in A∁.

The boundary ∂A is the set of boundary points of A.
The interior of A is the set of all points x ∈ A such that for some ε > 0, Bε(x) ⊂ A.
The closure of A is the smallest closed set containing A, and is equal to A ∪ ∂A.

[Illustration]
[Exercises]
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Definition 40: Limit

Let f : Ω ⊂ Rn → Rm, where Ω is open. Let x0 ∈ Ω ∪ ∂Ω, and let N be a neighborhood of
b ∈ Rm.

We say that f is eventually in N as x approaches x0, if there exists a neighborhood U of x0,
such that x ∈ U but x , x0 and x ∈ Ω imply f (x) ∈ N.

We say that f (x) approaches b as x approaches x0,

lim
x→x0

f (x) = b or f (x)→ b as x→ x0, (3.10)

when, given any neighborhood N of b, f is eventually in N as x approaches x0.

Interpretation: f (x) is close to b if x is close to x0.
Important to note that limits are unique.

Definition 41: Continuity

Let f : Ω ⊂ Rn → Rm. Let x0 ∈ Ω. We say that f is continuous at x0 if

lim
x→x0

f (x) = f (x0). (3.11)

This is the multidimensional version of the notion that the graph of a continuous function is un-
broken, does not make jumps.

[Examples]
[Exercises]

Theorem 19: Properties of continuous functions

Let f , g : Ω ⊂ Rn → Rm be functions with a common domain Ω, continuous at x0: Then:

1. f + g and α f for any α ∈ R are continuous at x0.

2. In the scalar-valued case m = 1, the product f g is continuous at x0

3. If f , 0 in all of Ω, then 1/ f is continuous at x0

4. The component functions fi : Ω→ R are all continuous at x0. The converse is also true.

Theorem 20: Compositions of functions

Let f : Ω ⊂ Rn → Rm be continuous at x0 ∈ Ω, and g : Ω′ ⊂ Rm → Ro. Suppose f [Ω] ⊂ Ω′,
and let g be continuous at y0 = f (x0). Then h : Ω ⊂ Rn → Ro,

h(x) = g( f (x0)

is continuous at x0.

[Exercises]
We have an equivalent characterization of continuity using an ε-δ argument:
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Theorem 21: ε-δ continuity

Let f : Ω ⊂ Rn → Rm. Then f is continuous at x0 ∈ Ω if and only if for every ε > 0 there is a
δ > 0 such that

x ∈ Ω and ‖x − x0‖ < δ =⇒ ‖ f (x) − f (x0)‖ < ε. (3.12)

The norm and inner product spaces encountered earlier are specializations of the general concept
of topological vector spaces (TVS). We have the chain,

TVS > metric vector space > normed vector space > inner product space

The spaces to the right are less general than the spaces to the left. The fact that we have a topology,
means that we can talk about continuous functions between the spaces. (This is very different from
saying that the functions in function spaces are continuous!)

Example 11

The Sobolev space H2([0, 1]) of twice weakly differentiable functions in L2([0, 1]) with deriva-
tives in L2([0, 1]). Let T = −1

2∂
2/∂x2 be the Laplace operator. This function is a linear contin-

uous function from H2([0, 1]) to L2([0, 1]).

Topological vector space. A translationally invariant definition of open sets is given. In topology,
open sets are much more general than those defined by metrics. A locally convex TVS, for example,
is given by a family of seminorms. The perhaps most prominent example of a TVS are the spaces of
test functions and distributions, e.g., objects like the Dirac δ-function.

Metric vector space. The open sets are given by ε-balls defined by a metric. Thus, a metric space
is a TVS.

Definition 42: Metric

Let M be a set. A function f : S × S → R is a metric if it satisfies the following axioms:

1. d(x, y) = d(y, x) symmetry

2. d(x, y) ≥ 0, and d(x, y) = 0 if and only if x = y positivity and nondegeneracy

3. d(x, y) ≤ d(x, z) + d(z, y) triangle inequality

The pair (M, d) is a metric space.

The intuition behind the metric is that is an abstraction of computing distances between points.
However, there are many different ways of measuring distance than the Euclidean distance. Indeed,
many spaces are not Euclidean at all.

Normed vector space. The metric is given by a norm,

d(x, y) = ‖x − y‖ (3.13)

If a normed vector space is complete, it is called a Banach space.
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Inner product space. The norm is given by an inner product, An inner product induces a norm:

‖x‖ =
√
〈x, x〉. (3.14)

If the inner product space is complete, it is called a Hilbert space.

Definition 43: Inner product

An inner product 〈·, ·〉 : V × V → F is a map which satisfies the following axioms:

1. 〈x, x〉 ≥ 0, 〈x, x〉 = 0 if and only if x = 0 non-negative

2. 〈x, αy + βz〉 = α 〈x, y〉 + β 〈x, z〉 linearity

3. 〈αy + βz, x〉 = ᾱ 〈y, x〉 + β̄ 〈z, x〉 conjugate linearity

4. 〈x, y〉 = 〈y, x〉 hermiticity
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Measure and integration theory

Most (all?) laws of nature are formulated using differential equations, and in general, partial differ-
ential equations (PDEs) form a class of problems of great value to any scientist.

The Schrödinger equation for a molecule is a PDE. Its mathematically rigorous formulation relies
on abstract vector spaces of Lebesgue integrable functions. Moreover, computing and manipulating
integrals is an important task in theoretical chemistry. Thus, we here give an overview of the field
measure and integration.

The Lebesgue integral is a generalization of the Riemann integral. Admittedly, it is rather more
complicated to define, but the result is powerful results that allow us to define such things as Hilbert
spaces of square integrable functions.

Recommended reading

The slim book by Bartle is a classic in mea-
sure and integration theory. It contains all
you need.
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Recommended reading

An excellent YouTube channel is The Bright
Side of Mathematics, created by Dr. Ju-
lian P. Grossmann. Fantastic pedagogical
presentation of many topics, well suited to
give an intuitive impression and even more.
Check out the videos on measure and inte-
gration! In fact, I based parts of my presen-
tation of this topic on the videos.

4.1 Measurable sets

Measure theory tries to assign measure to subsets of some set X. This can be lengths of intervals of R,
areas in R2, et.c. A little thought shows that we need to consider quite general subsets. For example, I
expect to be able to measure the area of a circle, but also the circle with a single point, or a countable
number of points, punched out. Moreover, when integrating functions, we compute areas under a
curve. Changing a function at a single point in R, or a whole surface in R3, does not change the value
of the integral of the function. We need to have a more rigorous understanding of measure.

Consider the real lineR. Our intuition tells us that an interval [a, b] ⊂ R has length µ([a, b]) = b−a.
The symbol µ means “measure”. Similarly, the length of R must be infinite, µ(R) = +∞. We also
want the measure of a union of two disjoint intervals to be the sum of the lengths, µ([a, b] ∪ [c, d]) =
µ([a, b])+ µ([c, d]), with a < b ≤ c < d. And the measure of a single point should be zero, µ({x}) = 0.
The measure of finitely many points should also be zero, but what about infinitely many points? If the
set is contably infinite, we expect the measure to be zero, but the interval is an uncountably infinite
set, with positive measure.

This leads to the notion of a σ-algebra; an all-important notion in measure theory:

Definition 44: σ-algebra

et X be a set. A σ-algebra X is a family of subsets of X such that:

1. ∅, X ∈ X empty set and X

2. A ∈ X if and only if A∁ = X \ A ∈ X complements

3. Ai ∈ X for i ∈ I ⊂ N implies that
⋃

i∈I Ai ⊂ X countable unions

The pair (X, X) is called a measurable space, and A ∈ X is called a measurable (sub)set.

49

https://www.youtube.com/c/brightsideofmaths/playlists
https://www.youtube.com/c/brightsideofmaths/playlists


Reading between the lines, so to speak, we dont’t expect to be able to measure all subsets of X.
Indeed, it turns out it is not possible in general to define a measure on all subsets of, say, R. There will
be non-measurable sets, to which we cannot assign a meaningful measure.

Example 12

The smallest possible σ-algebra:
X = {∅, X} (4.1)

The largestpossible σ-algebra:

X = 2X = {all subsets of X} (4.2)

Interesting cases lie between these.

The following lemma is useful, because it shows that one can always find a smallest σ-algebra
fulfilling some condition:

Lemma 2: Intersections of σ-algebras

Let I be a set, and let {Xi | i ∈ I} be a family of σ-algebras. Then the intersection of all the
σ-algebras is again a σ-algebra:

X = {A | A ∈ Xi for all i ∈ I} (4.3)

Turning to Euclidean space, or any other metric space, the open sets form subsets that we wisth to
make measurable.

Definition 45: Borel σ-algebra

Let X be a metric space. The Borel σ-algebra B(X) is the smallest σ-algebra that contain all
open subsets of X. (It is enough to require that it contains all ε-balls.)

Such a smallestσ-algebra exists by the above lemma. We say that the Borelσ-algebra is generated
by the open sets.

Which subsets are included in the Borel σ-algebra?

• All open sets

• All closed sets

• Countable unions of open and closed sets

• Complements of countable unions of open and closed sets

• …
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Example 13

Consider R, and its Borel σ-algebra. It contains all subsets consisting of a single point, since
{x} = (] − ∞, x[∪]x,+∞[)∁. But then we can take countable unions of such points, e.g., the
rational numbers Q, which is also measurable. But then we can take the complement, to get the
irrational numbers R \ Q, also measurable.

We can also consider the Cantor set: Start with an interval, and remove the middle third.
Remove the middle third of those two again, and continue. It is not hard to see that this produces
a measurable set, and in fact a fractal.

So the Borel σ-algebra B(R) contains quite complicated sets.

4.2 Measure

We now add the next ingredient: a measure.

Definition 46: Measure, measure space

Let (X,X) be a mesurable space. A measure is a function µ : X → [0,+∞[∪{+∞} that satisfies

1. µ(∅) = 0

2. For a countable family of disjoint subsets {Ai} ⊂ X, i.e., Ai ∩ A j = 0, we have

µ

 ∞⋃
i

Ai

 = ∞∑
i

µ(Ai) σ-additive (4.4)

We then say that (X, X, µ) is a measure space.

The definition of the measure µ encapsulate some intuitive notions about measuring volumes.
Volume of nothing is zero, and volume of unions of sets is the sum of the volume. Finally, the infinite
union allows for approximation of volumes. Note that a similar idea was present in the definition of
the σ-algebra.

An example that shows how measure can be used differently, consider counting measure:

Example 14: Counting measure

Let N be a finite set, and let N = 2N , the set of all subsets of N. This is a σ-algebra, and since
N is finite, we can define counting measure:

µ(A) = |A| (number of elements) (4.5)

Having a measure theoretic concept of counting is more useful that one would think! For exam-
ple, it will allow us to rigorously define square integrable functions over electron configuration
space R3 × {↑, ↓} in a manner which does not artificially distinguish between discrete and con-
tinuous degrees of freedom.

We next introduce the notion of ameasurable function. These are functions that we later can define
the integral for.
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Figure 4.1: Characteristic function of a subset U of R consisting of two intervals.

Definition 47: Measurable function

Let (X, X) and (Y,Y) be measurable spaces. A function

f : X → Y (4.6)

is called measurable if, for all U ∈ Y,

f −1[U] {x ∈ X | f (x) ∈ U} ∈ X (4.7)

Note the close analogy with the definition of continuous functions between metric (or more gener-
ally topological) spaces: The inverse image of an open set must be open. Measurability of a function
is certainly less restrictive: The inverse image of an open set need only be measurable – and we saw
that there are “complicated” measurable sets.

Just like for continuous functions, when f : X → Y with Y = Fn, we get that linear combinations of
measurable functions are again measurable. We can also multiply or take absolute values of masurable
functions, and still get measurable functions. [Perhaps formulate as theorem]

Example 15

Why is this a definition that can be useful? Consider the characteristic function χU of some
subset U ⊂ Y , defined by

χU(y) =

1 y ∈ U
0 y < U

(4.8)

See Fig. 4.1. Then the inverse image χ−1
U [1] is exactly U. If U is actually measurable, this

means that we can measure it with a measure µ : Y → [0,+∞[.
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Figure 4.2: A non-negative simple function.

Example 16

Consider the function

f (x) =

1 x ∈ Q
0 x ∈ R \ Q

(4.9)

This function is not Riemann integrable, since the upper and lower Riemann sums will converge
to different numbers. However, since f = χQ we now expect it to be integrable. But what will
be the integral? Since µ(Q) = 0 we expect that f −1(1) = Q will not contribute, i.e., the integral
is 0.

4.3 The integral

We now turn to actually defining the integral of a measurable function. One begins by defining the
integral of simple functions.

Definition 48: Simple functions

Let (X, X) be a measurable space. Let f : X → R be a measurable function. We say that f is a
simple function if it takes on only finitely many function values. The set of simple functions is
denoted S. The set of non-negative simple functions is denoted S+.

A simple measurable function has a unique decomposition as

f =
n∑

i=1

ciχUi , Ui ∈ X, Ui ∩ U j = ∅. (4.10)

A simple function is illustrated in Fig. 4.2. What should the integral of this simple function be?
Clearly, the integral of the characteristic function χU of some measurable U should be the volume, or
measure, of U! We have to be careful, since the measure of U can be infinite.
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Figure 4.3: Approximation of a function from below by simple functions.

Definition 49: Integral of non-negative simple function

Let (X, X, µ) be a measure space. Let f : X → R be simple and non-negative. We define the
integral of f to be the extended valued function I : S+ → R ∪ {+∞} given by,∫

X
f dµ = I

∑
i

ciχUi

 =∑
i

ci µ(Ui). (4.11)

The function I is linear and monotone,

f , g ∈ S+, f ≤ g =⇒ I( f ) ≤ I(g). (4.12)

Let now f : X → [0,+∞[ be a non-negative measurable function. It is implicit here, that we have
the Borel σ-algebra on the real numbers. How do we define the integral? The idea is to approximate
f by simple functions from below, and indeed this can always be done.

Definition 50: Integral of non-neagative functions

Let (X, X, µ) be a measure space, and let f : X → [0,+∞[ be measurable. We define the integral
of f to be ∫

X
f dµ = sup

{
I(h) | h ∈ S+, h ≤ f

} ∈ [0,∞]. (4.13)

The function f is integrable if
∫

X
f dµ < +∞.

Thus, we take every non-negative simple function that lies below f , compute the integral, and
maximize over all such simple functions. If f can be approximated by simple functions, which it can,
then the integral could and should converge. (The technical result that allows approximation from
below in this way is the monotone convergence theorem.)

In Fig. 4.3, the approximation of f by simple functions is illustrated. From this illustration we
take home perhaps the most important intuition: Whereas the Riemann integral is defined in terms
of approximating the are below the graph by vertical strips, the measure-theoretic integral instead
consider horizontal strips!

In the next result, the phrase µ-almost everywhere, abbreviated µ-a.e., means that the condtion
holds for every x ∈ X except possibly at a set of measure zero.
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Theorem 22: Properties of the integral

Let (X, X, µ) be a measure space, and let f ≥ 0 be a measurable function f : X → R. The
integral on such functions satisfies: Monotone:

f ≤ g measurable functions =⇒
∫

X
f dµ ≤

∫
X

f dµ (4.14)

Vanishing on set of measure zero:

f = 0 µ-a.e. ⇐⇒
∫

X
f dµ = 0. (4.15)

Irrelevant on set of measure zero:

f = g µ-a.e. =⇒
∫

X
f dµ =

∫
X

dµ (4.16)

The concept of “almost everywhere” is very important when Lebesgue integrals are considered.
Whenever a function is only “used” to define integrals, it does not matter what the function values are
at a set of measure zero. As we have seen, such sets can be fairly large!

We can now define the integral of arbitrary measurable functions.

Definition 51: Integral

Let (X, X, µ) be a measure space, and let f : X → R be measurable. Let f+ and f− be the
positive, resp., negative part of f . We define f to be integrable if f+ and f− are ingegrable, and
we define ∫

X
f dµ =

∫
X

f+ dµ −
∫

X
f− dµ. (4.17)

s

4.4 Lebesgue measure and the Lebesgue integral

Although we have defined the Borel σ-algebra on Rn, and indicated how we would like the measure
to be, we have not yet defined the measure.

The key technical result that allows the existence and uniqueness of a measure on the Borel σ-
algebra B(Rn) is Carathéodoty’s extension theorem. We will not describe this theorem in any detail,
but just note that when we have defined our measure on a sufficiently large subset of B(Rn), it can be
extended to the whole algebra in a unique fashion to an actual measure.

The subset of a σ-algebra needed is called a semiring: we have the empty set and X, as for the
σ-algebra, and we also have intersevtions A ∩ B of oairs sets in the semiring. Finally, when we
consider A \ B, this should be decomposable in a finite number of sets from the ring. Nothing more,
no complements or unions. The reader can check that these conditions hold for the set of all half-open
intervals [a, b[⊂ R, which is the most important examle. Now, the half-open intervals generate the
Borel algebra of R, and this is key.

For Rn, take the set of Cartesian products of half-open intervals as a semiring. A box is B =
[a1, b1[× · · · × [an, bn[, with measure µ(B) = (b1 − a1) · · · (bn − an). Now, the boxes generate the Borel
algebra. The Carathéodory exension theorem now guarantees the existence of a unique measure on
B(Rn) such that it correctly reproduces the measure of all boxes.

55



This measure is called the Lebesgue measure on Rn, and together with the integral defined earlier,
it makes for a very powerful integral. This integral generalizes the Riemann integralm in the sense
that every Riemann integrable function is also Lebesgue integrable, with the same integral of course.
But there are also many functions that “should” have an integral but for which the Riemann integral
fails. For example, exhanging limits and integrals is more often valid with the Lebesgue integral. The
Lebesgue integral is also needed to produce the Hilbert space of square-integrable wavefunctions in
quantum mechanics!

4.5 Lebesgue spaces

As claimed, the theory of PDEs are formulated using function spaces. These function spaces are in
general called Lebesgue spaces, and are based on the Lebesgue integral.

In this section, let (X, X, µ) be a fixed measure space, for example a measurable subset Ω ⊂ Rn

with Lebesgue measure, and we consider F ∈ {R,C} a measure space with the Lebesgue measure. For
complex functions, we consider really C as R2.

The reader may have encountered square integrable functions before, i.e., functions f : X → C
that satisfies ∫

Ω

| f (x)|2 dx < +∞. (4.18)

Here, dx is short for the Lebesgue measure. The reader may also be used to thinking of f as a point
in Hilbert space L2(Ω). However, it is not hard to see, that we can have f , g but∫

| f − g|2 dnx = 0 ! (4.19)

So, are the functions really different?
In quantum mechanics, the wavefunction ψ(x) fo a particle defines a probability density P(x) =

|ψ(x)|2. The theory of probability alsowork with measurable spaces, and the probability of locating the
particle in a subset A ⊂ Ω is given by

∫
A

P(x) dx, where A is measurable. The pointwise definition of a
probability density is therefore only meaningful up to a set of measure zero, i.e., “almost everywhere”.

Let f : X → F be a measurable function. Recall that
∫

X
f dµ = 0 if and only if f (x) = 0 “almost

everywhere”. An example is the function over Rn which is zero except for at the points with rational
coordinates. As the integral concerned, this function is zero!

To define function spaces with integrals involved in norms and inner products rigorously, we need
the following:

Definition 52: Equivalence classes of measurable functions

Let f , g : X → F be measurable functions. We say that f and g are equivalent, written f ∼ g, if
f = g almost everywhere. We write

[ f ] = {g | f ∼ g} (4.20)

for the equivalence class of functions that are almost everywhere the same.
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Definition 53: Lebesgue spaces

Let p ≥ 1, and define the p-norm

‖[ f ]‖p = ‖ f ‖p =

(∫
X
| f (x)|p dnx

)1/p

(4.21)

The space Lp(X) is defined as

Lp(X) =
{
[ f ] | f : X → F measurable, ‖ f ‖p < +∞

}
. (4.22)

Theorem 23

The Lebesgue spaces Lp(X) are complete normed spaces, i.e., Banach spaces. (See Chapter 5.)
The space L2(X) is a Hilbert space with inner product

〈 f , g〉L2(X) =

∫
f (x)g(x) dnx. (4.23)

The fact that Lp spaces are complete is of great importance. It guarantees that if we consider
Cauchy sequences in these spaces, they are converge to something in the space. This is extremely
useful when studying PDEs.

To close this section, we demonstrate just how general the Lebesgue spaces are, and how “wild”
integrable functions can be.

Example 17: A wild function

Let X = R3 with Lebesgue measure. Let u(x) = ‖x‖−1e−‖x‖. This function is square integrable.
(Can you prove it?) The function is also unbounded as ‖x‖ → 0.

Now let Q3 be the set of rational coordinates in R3. It is a countable set, so we may write it
as a sequence yi, i ∈ N. Consider the function

f (x) =
∞∑

i=1

2−iu(x − yi), (4.24)

i.e., at every rational point, we place a singularity.
It now follows, that for every ε-ball in R3, no matter how small, the function is unbounded.

Yet,

‖ f ‖L2 ≤
∞∑

i=1

2−i‖u‖L2 < +∞. (4.25)

Not only is the norm finite, but since L2 is complete, the series actually converges to an element
in L2(X). This function is unbounded in every arbitrarily small region.
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Functional analysis

5.1 Infinite dimensions

Recommended reading

A very pedagogical text. Covers met-
ric spaces, Banach spaces, Hilbert spaces,
the fundamental theorems like the Hahn–
Banach theorem, open mapping theorem,
closed graph theorem. Spectral theory of
self-adjoint operators, applications to quan-
tum mechanics. (This makes the book spe-
cial, together with its pedagogical level.)
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Recommended reading

A classic in PDE theory. Used in many grad-
uate courses all over the world.

Recommended reading

A classic. Maybe not the most accessible
text, but it is very much geared towards
mathematical physics.
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Recommended reading

Eberhard Zeidler was a giant of nonlinear
functional analysis, and enormously produc-
tive. Many of his volumes focus greatly on
pedagogical exposition and motivation for
study. This book is no exception.

We now enter the realm of inifinite dimensional vector spaces. The mathematical field that studies
such objects is called Functional Analysis. Infinite dimensional vector spaces are often spaces of
functions. We know that operators like the derivative acts linearly on differentiable functions. Hence,
functional analysis is the mathematical language of analysis of partial differential equations.

In quantum chemistry, our laws of nature are linear, e.g., the time-independent Schrödinger equa-
tion is a linear partial differential equation. On the other hand, many of our approximation methods
are nonlinear in nature. Such methods comprise self-consistent field methods like Hartree–Fock and
density-functional theory, complete-active space self-consistent field theory, and coupled-cluster the-
ory. Hartrr–Fock, for example, can be viewed as a coupled set of nonlinear integro-partial differential
equations. The mathematical analysis of these methods then needs nonlinear functional analysis.
Since most methods are formulated in terms of optimization of some energy function, we must deal
with nonlinear optimization in infinite dimensions. There are also methods, like many-body pertur-
bation theory, that are not variational, but instead needs the abstract theory of perturbation theory in
order to be studied.

All these topics are fairly advanced, and usually encountered only after a few semesters’ mathemat-
ics studies. The published mathematics papers that study quantum chemical methods mathematically
are brilliant and truly inspiring works of famous mathematicians such as P.-L. Lions, E.H. Lieb, B. Si-
mon, and T. Kato, to name a few. Hence, this section will only mention some concepts and try to draw
some lines, to get a feel for the concepts that the mathematician works with. Maybe it can be a help
to read and understand mathematics papers on quantum chemistry methods, and to bridge a language
barrier that certainly is present.
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5.1.1 Introducing infinite dimensions

We have previously studied finite-dimensional vector spaces. However, quantum mechanics is for-
mulated with an infinite dimensional vector space – a separable Hilbert space. The quantum chemist
may say, “but we always introduce a basis set, and then we are in finite dimensions!” True, but the
underlying physical model can not be formulated in finite dimensions. For example, if we consider
quantum mechanics in one spatial dimension, the canonical commutator relation

[x̂, p̂x] = iℏ1 (5.1)

requires infinite dimensions. Furthermore, in order to prove error estimates of some quantum chemical
model, one needs to in some way compare the finite dimensional model with the infinite dimensional
“exact” model. This is best done by basically working in the infinite dimensional setting all the time,
considering instead finite dimensional subspaces of the function spaces involved. [Quantum chemists
are used to talking about the full-configuration interaction limit as “exact”. It is not! One still has the
basis set error. This can not be eliminated in finite dimensions.]

In Definition 10, Section 2.1.4, we introduced a general vector space. There is no reason why a
general vector space should have a finite dimension. Here are some examples of vector spaces that
have infinite dimension:

Example 18: Space of all functions over a set

Let S be a set. The space of all functions f : S → F is a vector space, with addition and scalar
multiplication defined pointwise,

[ f + g](x) = f (x) + g(x), [α f ](x) = α f (x). (5.2)

The dimension of this space is at least as large as the cardinality of S . To see this, let y ∈ S be
arbitrary, and let fy : S → F be the function defined by fy(x) = 0 if x , y and fy(y) = 1. These
functions are linearly independent. Thus every point in S gives a linearly independent vector.

Special cases: S = N gives the set of all sequences. S = {1, 2, · · · ,N} gives Fn (without the
inner product, which is extra information).

Example 19: Space of all polynomials

The space of all polynomials p : F→ F with coefficients in F is a vector space. If we set S = F
in the previous example, the space of all polynomials is a subspace of the space of all functions
from F to F. An arbitrary element of our vector space can be written as

p(x) = a0 + a1x + a2x2 + · · · anxn

for a vector a = [a0, · · · , an] ∈ Fn+1. Note that n depends on p, and is not bounded, so the
dimension is infinite. In particular the monomials xn are linearly independent, and there are
infinitely many of these.
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Example 20: Space of continuous functions

Let Ω ⊂ Rn be a bounded, closed domain, such as a box [0, 1]n which includes its boundary.
Consider the setCk(Ω) of functions that are continuous at all points inΩ, with continuous partial
derivatives of order ≤ k. (See Chapter 6.3.2.) Consider in particular the special case k = 0. We
can supply a norm on this space,

‖ f ‖∞ = max {| f (x)| | x ∈ Ω} . (5.3)

The maximum can be shown to be attained, sinceΩ is bounded and closed, and hence compact.
(We have not covered compactness so far in the lecture notes.) It is a fact that C0 is complete
with this norm. This means. that if fk ∈ C0(Ω) is a sequence of continuous functions, and if

‖ f j − fk‖∞ = max{| f j(x) − fk(x)| | x ∈ Ω} (5.4)

is a Cauchy sequence, then it converges to some f ∈ C0(Ω), a continuous function. The com-
pleteness can be generalized to Ck, but we have to modify the norm accordingly.

TODO: Add plots illustrating the norm and convergence.

Example 21: N-electron Hilbert space

This is the main vector space of quantum chemistry, and a central ingredient in the mathematical
formulation of molecular problems in the Born–Oppenheimer approximation. This space is
constructed as follows: Let X = R3 × {↑, ↓} be two copies of Euclidean space. Here, ↑ and ↓ are
simply symbols that we associate with spin up and down (“α” and “β” spin). The set X is made
into a measure space by assigning the product of Lebesgue measure and counting measure (see
Chapter 4). We now can define single-electron space H1 = L2(X;C). For multiple electrons,
we take the antisymmetric tensor product N times,

HN = H1 ∧H1 · · · ∧ H1 (N times). (5.5)

The elements ofHN now become antisymmetric upon permutation of the particle indices, i.e.,
for all pairs (i, j),

ψ(x1, · · · , x j, · · · , xi, ·, xN) = −ψ(x1, · · · , xi, · · · , x j, · · · , xN).

By theorems on spaces of square integrable functions, we have the alternative characteri-
zation: ψ ∈ HN if and only of ψ ∈ L2(XN) and is antisymmetric. Since XN can be viewed
as 2N copies of R3N associated with the 2N unique arrangements of N spins, we also have
ψ ∈ L2(R3N)N , i.e., ψ is a vector of functions. These functions are not necessarily antisym-
metric, since they isolate the spatial coordinate.

The infinite dimensional spaces wemeet in functional analysis are often spaces of functions. These
spaces, when supplied with a suitable topological structure, are designed to deal with partial differen-
tial equations. Here is an example that shows how this is done for a simple PDE:
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Example 22: Poisson equation

(For this example, we use nomenclature from Chapter 6.) Let Ω =]0, 1[3⊂ R3 be an open box,
a typical domain with a well-behaved boundary ∂Ω. Consider the Poissin equation, a PDE,
formulated “classically”: Find u : Ω→ R such that

∇2u(x) = f (x), x ∈ Ω (5.6)
u(x) = 0, x ∈ ∂Ω (5.7)

where f : R3 → R is some function, and such that u(x) = 0 on ∂Ω. What is meant by a solution
to this equation? Should we require u to have continuous derivatives up to and including second
order? Is it enough that the second order derivatives exist? What are the properties of the “data”
f ? These questions must be answered, such that one can provide a sound theory for existence
and uniqueness of solutions.

If we introduce the Sobolev space H1
0(Ω) of twice weakly differentiable functions overΩ that

vanishes on the boundary, this is a Hilbert space. In fact the Laplace operator ∇2 is a continuous
operator from H1

0(Ω) into the space H−1
0 (Ω), which is a set that also contains some generalized

functions, i.e., functions that are not really functions, but make sense when we integrate them.
It is big! Then, the PDE can be formulated as: Given f ∈ H−1

0 (Ω), find u ∈ H1
0(Ω) such that

Âu = f . (5.8)

Now, one can show that ∇2 = Â : H1
0 → H−1

0 is in fact not only continuous, but also invert-
ible, with a continuous inverse. Then, there exists a unique solution u = Â−1 f that depends
continuously on f .

Now, one can introduce the Galerkin method: Choose a finite dimensional subspace V ⊂
H1

0(Ω) with basis {bi}. For example, a finite element space. This space is suitable for approx-
imation, in the sense that we can refine the finite element mesh and obtain approximations of
any accuracy of elements in H1

0 . The PDE becomes a linear algebra problem,

Au = f, (5.9)

with Ai j = 〈bi, Âb j〉 = 〈∇bi,∇b j〉L2 and f j = 〈bk, f 〉L2 .
From the structure of the function spaces and the Galerkin space, we know that this approx-

imation is convergent as the mesh becomes finer. We even have error estimates.
This methodology is quite powerful, and amply motivates the study of functional analysis

for studying PDEs.

TODO: Elevate this example to a section.

5.1.2 Banach spaces and Hilbert spaces

In Section 3.1, we introduced the inner product spaces and normed spaces. However, the spaces that
are most useful in analysis are complete spaces: Accroding to Definition 27 a space is complete if all
sequences that “ought to converge” actually converges. All possible limits of sequences are present,
and there are no holes, so to speak, in the space.
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Definition 54: Banach and Hilbert space

A Banach space is a complete normed vector space. AHilbert space is a complete inner product
space.

All Hilbert spaces are Banach spaces, but not vice versa.
Infinite dimensional spaces can be huge. Usually, we will be mostly interested in separable spaces:

Definition 55: Separable space

A Banach space X is called separable if it contains a dense countable subset, i.e., a countable
A ⊂ X such that the closure of A is X.

Recall that a subset A ⊂ V is dense if its closure is V . For example, the rationals Q are dense in R.
A space is separable if there exists some list of elements that form a dense subset: all elements of the
space can be written as limits of sequences of elements taken from this list. This seems rather drastic,
but thankfully, most spaces of interest to us are separable.

5.2 Lp spaces (Lebesgue spaces)

Consider some open subset Ω ⊂ Rn, with a “nice” boundary (e.g., piecewise smooth) and consider
the set of measurable functions f : Ω → F. (See Section 4 on measure and integration theory.
Measurable functions are roughly those that have an integral, even if it may be infinite.) We have
previously encountered the Lp-spaces.

Recall the fact that [ f ] ∈ Lp(Ω) is an equivalence class of almost-everywhere equal functions.
We now have the strange situation that this is almost universally ignored; one writes things like “Let
f be defined as [some definition] be a function, and we now show that f ∈ Lp”. Only when there
is doubt about some property, e.g., a singularity, one suddenly reintroduce the notion of equivalence
class. Talk about abuse of notation! So this is something to be aware of.

We also have the case p = +∞, but then the norm is not defined as an integral, but rather the
essential supremum:

‖ f ‖∞ := esssup
x∈Ω

| f (x)|, (5.10)

where the essential supremum means

esssup
x∈Ω

| f (x)| := inf{ sup
x∈Ω\Z

| f (x)| | Z has zero measure}. (5.11)

This is a bit of a mouthful, but it essentially means “maximum, but try to take away point sets of zero
measure to lower the value”. The space L∞ is not separable.

Definition 56: Almost everywhere

Let f be a measurable function over a measure space. Let P( f (x)) be a statement, such as
“| f (x)| < 1. We say that P( f (x)) holds almost everywhere if it holds everywhere except for a
set of measure zero.
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Example 23: Coulomb potential

In the analysis of the molecular Schrödinger equation, we must deal with the singular Coulomb
potential between charged particles. For the hydrogen atom in the Born–Oppenheimer approx-
imation,

V(r) =
1
r
=

1
‖r‖ =

1√
x2 + y2 + z2

. (5.12)

As a function 1/r does not live in any of the Lp spaces due to the singularity at the origin. On the
other hand, the physics of the Coulomb potential has a short-range and a long-range part. The
short-range part is responsible for the nuclear cusp in the wavefunction, while the long-range
part is responsible for the infinite scattering cross section. Thus, we split V into a long-range
and a short-range part, by introducing some ball Ω = BR(R3) and setting

V = Vsr + Vlr =
1
r
χΩ +

1
r
χΩ∁ . (5.13)

Now the long range part is clearly bounded by 1/R,

Vlr ∈ L∞(R3), (5.14)

while the short-range part can be shown to be

Vsr ∈ Lp(R3), p ∈ [1, 2]. (5.15)

For analysis, the value p = 3/2 is often taken, giving

V ∈ L3/2(R3) + L∞(R3), (5.16)

where the right-hand side is defined as the space of functions splittable as a sum with terms
from each space. (This is in fact a Banach space when the proper norm is supplied.)

Thus, we see how Banach spaces can be used to handle some singular potentials. This can
in turn help with formulating the Schrödinger equation in a rigorous manner.

5.2.1 The weak derivative

Studying PDE, one needs partial derivatives of functions in Lp-spaces. However, we have seen that
such functions are only defined up to a set of measure zero. In order to define partial derivatives of
Lp functions, we need a strategy that deals with this. The solution is the weak derivative.

We first need the notion of a test function.

Definition 57: Test functions

Let Ω ⊂ Rn be open. A test function is an infinitely differentiable function f : Ω → F with
compact support, i.e., there is some closed and bounded set K ⊂ Ω such that f is identically
zero on K∁.

The set of test functions is denoted C∞0 (Ω).

Test functions exist. The classic example is the following:
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Figure 5.1: The bump function from Example 24 in one dimension.

Example 24: The bump function

Let u : Rn → R be given by

u(x) =

0 ‖x‖ ≥ 1
exp(−1/(1 − ‖x‖2)) ‖x‖ < 1

(5.17)

Then u is infinitely many times differentiable, in particular across the boundary of the unit
sphere, too. See Fig. 5.1.

From the above example, a huge number of test functions can be generated by convolution: Let
η = u/

∫
u, normalizing the bump. Take any integrable function f : Rn → C, and take the convolution

with η,

fε(x) =
∫

B1(0)
ε−nη(y/ε) f (x − y) dy. (5.18)

This process smooths f , and is called mollification of f . For small ε, the function is only “slightly”
modified, since the bump becomes very concentrated. In particular, if f is supported in K, then fε is
supported in only a slightly larger Kε.

In fact the set of test functions is dense in all the Lp spaces except L∞. [Check precise wording
of this.] All Lp functions can be arbitrarily well approximated by such functions. Can you guess a
construction of the approximate sequence for a given f ∈ Lp(Ω)?

TODO: Produce a visualization.
Having established the set of test functions, we can now define the weak derivative:
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Definition 58: Weak derivative/distributional derivative

Let f ∈ L1
loc(Ω) be a locally integrable function. This means that f ∈ L1

loc(K) for all bounded
subsets K ⊂ Ω. (This function set is very general, and contains all the Lp spaces!)

A measurable function gk is called a weak derivative of f if, for all test functions φ ∈ C∞0 (Ω),∫
φ(x)gk(x) dc = −

∫
∂φ(x)
∂xk

f (x) dx. (5.19)

We see that the weak derivative behaves just like the derivative of f when being under the
integral sign and “tested against” a test function.

Weak derivatives of higher order are defined completely analogously. Let α = (α1, · · · , αk)
denote a multi-index of nonnegative integers, and define

∂α =
∂α1

∂xα1
1

∂α2

∂xα2
2
· · · ∂

αn

∂ααn
n
, |α| =

n∑
i=1

αi (5.20)

gα ∈ L1
loc is a weak partial derivative of mixed order α if∫

φ(x)gα(x) dx = (−1)|α|
∫

∂αφ(x) f (x) dx. (5.21)

Mixed weak derivatives are symmetric. The weak derivative is unique up to a set of measure
zero.

5.2.2 Sobolev spaces

A very important class of function spaces are Sobolev spaces.

Definition 59: Sobolev space

Let Ω ⊂ Rn be open. Let p ∈ [1,+∞] (incliuding infinite). Let u ∈ Lp(Ω), and suppose u has
weak derivatives up to order k ≥ 1 that are also in Lp(Ω). Then we say that u ∈ Wk,p(Ω), a
Sobolev space. The Sobolev space Wk,p(Ω) is a Banach space with norm

‖u‖Wk,p = ‖u‖p +
∑
α,|α|≤k

‖∂αu‖p, (5.22)

where α denotes a partial derivative of order ≤ k. [For example, order 1 means α ∈ {1, · · · , n},
order 2 means α = (α1, α2) with αi ∈ {1, · · · , n}, and so on.]

For encoding boundary conditions, it is useful to consider Sobolev spaces of functions that in some
“integrable sense” vanish on ∂Ω.

Definition 60: Sobolev space, homogenous boundary conditions

Let Ω ⊂ Rn with piecewise smooth boundary. The space Wk,p
0 (Ω) is defined as the clousure in

the Wk,p(Ω) norm of the set of test functions C∞0 (Ω).

The definition may seem arbitrary, but the denseness of the test functions in Wk,p(Rn) implies that
this makes sense, and indeed corresponds to functions that vanish near the boundary, when k > 0.
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When k = 0 we just get Lp(Ω).

5.3 Hilbert spaces

5.3.1 L2 -- the square integrable functions

For a quantum chemist, the most important Lp space is L2(Ω), where Ω is a measure space, such as
R3, or X = R3 × {↑, ↓}. Previously, we saw that this was a Banach space with the L2 norm, but this
norm comes from an inner product:

〈 f , g〉L2 :=
∫
Ω

f (x)g(x) dx, (5.23)

where the complex conjugate is relevant only if F = C. Again, functions that agree on sets of measure
zero are identified.

5.3.2 ℓ2 -- the archetypal separable Hilbert space

Consider the following situation: Let u = (ui) ⊂ F be a real or complex-valued sequence. Let p ∈
[1,+∞). We can define a norm given by

‖u‖p :=

∑
i∈N
|ui|p

1/p

. (5.24)

The set of sequences such that ‖up‖ is a convergent sum is called ℓp. For p = +∞, we set ‖u‖+∞ =
maxi |ui|. The spaces ℓp are all Banach spaces.

In particular, the space ℓ2 is a Hilbert space when we use the inner product

〈u, v〉 =
∑
i∈N

uivi. (5.25)

This Hilbert space is an archetypal Hilbert space, as we will next see.

5.3.3 Existence of orthonormal bases

TODO: This section needs more work.
The following fact is significant, because it tells us that ℓ2(N;F) is an archetypal separable Hilbert

space, much in the same manner as Fn is the archetypal finite-dimensional Hilbert space.
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Definition 61: Orthnormal basis for separable Hilbert space

An orthonormal basis for an infinite dimensional separable Hilbert space V is a linearly inde-
pendent orthonormal set {bi} ⊂ V (i.e., 〈bi, b j〉 = 0 whenever i , j, and 〈bi, bi〉 = 1), such that
for every u ∈ V , there exist numbers ci ∈ F such that

u =
∞∑

i=1

cibi. (5.26)

The infinite sum is to be interpreted as a series, i.e., u ∈ V means

‖u −
N∑

i=1

cibi‖ → 0 as N → +∞. (5.27)

The space of sequences equipped with the Euclidean inner product is denoted ℓ2(N),

〈c, d〉ℓ2 =

∞∑
i=1

cidi. (5.28)

We see that V and ℓ2 are isometrically isomorphic when a basis is given, since if v =
∑

i dibi

then 〈u, v〉 = 〈c, d〉ℓ2 .

An fundamental result is the following:

Theorem 24

Any separable Hilbert space has an orthonormal basis.

Thus any separable Hilbert space is essentially ℓ2(N) after a basis has been chosen.

5.4 Linear transformations

We now scratch the surface on linear transformations on infinite dimensional Banach and Hilbert
spaces.

LetV be a separable Hilbert space. We now know that wemay think of this space as the coneptually
simpler space ℓ2 = ℓ2(N), the space of square summable sequences. In particular, there is no notion
of having to consider equivalence classes of functions defined almost everywhere.

In the finite dimensional case, linear transformations between vector spaces becamematrices. How
about in the separable Hilbert space case? Do linear transformations and operators become infinite
matrices?

Yes and no. One can certainly define a class of linear transformations using infinite matrices, if one
is careful. However, the set of linear transformations on a Hilbert space is much richer than the cor-
responding finite dimensional linear transformations. For a given basis choice a linear transformation
may or may not have a well-defined matrix representation.

Perhaps the most important fact is that transformations need not be continuous. In the finite-
dimensional case, all linear transformations were continuous, even though we did not discuss this
fact: In finite dimensions, there is no way for a linear transformation to produce rips or tears or jumps.
Moreover, even if linear transformations is continuous, there are some that are “more continuous”
than others, such as compact operators, Hilbert–Schmidt operators, trace-class operators, and merely
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continuous operators.
Since the topology on a Banach or Hilbert space is translationally invariant, a linear transformation

T : V → W between two Banach spaces is continuous at x ∈ V if and only if it is continuous at 0, and
then continuity is equivalent to boundedness, i.e., a finite operator norm:

Definition 62: Bounded linear transformations

Let V and W be Banach spaces over F, and let D(T ) ⊂ V be a linear subspace.Let T : V → W
be a linear transformation, i.e., for all u, v ∈ D(T ) and all α ∈ F,

T (αu) = αTu,

and
T (u + v) = Tu + Tv.

The linear space D(T ) is called the domain of T , and it may or may not be all of T . Let ‖T‖L(V,W)

be the norm (“operator norm”) defined by

‖T‖L(V,W) = sup
{
‖Tu‖W
‖u‖V

| 0 , u ∈ D(T )
}
. (5.29)

If ‖T‖L(V,W) < +∞ and D(T ) = V , then T is a bounded, or countinuous, linear transformation
from V to W.

In the definition, note that we introduce the domain D(T ) of T : V → W. The reason is that
operators that are not bounded usually cannot be defined on all of V . On the other hand, if T is
bounded on D(T ) the bounded linear transformation theorem states that T can be unuqiely extended
to all of V . This is why we eliminate the domain in the definition of the space L(V,W) of bounded
linear transformations.

Theorem 25: Bounded linear transformations are continuous

Any T ∈ L(V,W) is a continuous function.

We now give an examples of linear transformations that are unbounded, i.e., not bounded.
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Example 25: Example of unbounded linear transformation

Let ℓ2(N,R) be the space of square summable sequences of real numbers, i.e., u = (un) ⊂ R
with

∞∑
n=1

u2
n < +∞.

Let A be the operator that is defined by

(Au)n = nun,

i.e., each element in the sequence is multiplied by n. Let (em)n = δm,n be the sequence
which is zero everywhere except for the m’th position, where we have a 1. Then Aem =

(0, 0, 0, · · · ,m, · · · ) where the m is in the m’th position. We have ‖Aem‖ = m, which grows
to infinity as m→ +∞. Therefore A is not bounded.

Furthermore, the sequence given by un = n−1 is square summable, that is,

‖u‖2 =
∑

n

n−2 < +∞.

However, Au = (1, 1, 1, 1, . . . ) which is clearly not square summable. So A cannot be defined
on all of ℓ2(N,R).

This example illustrates an important fact for unbounded operators: They are typically not every-
where defined.

Here is another example relevant for quantum chemistry:

Example 26: Unbounded operator

Let uα ∈ L2(R) be given by
uα(x) = N(α) exp(−αx2/2). (5.30)

Here, N(α) = (α/π)1/4 is such that ‖uα‖ = 1. Let D̂ = ∂x, and compute

∂xuα(x) = −αxuα(x). (5.31)

We obtain
‖∂xuα‖
‖uα‖

=

√
α

π
α2

∫
x2 exp(−αx2) dx. (5.32)

It is an easy exercise to compute that this goes to infinity as α → 0. Thus, ∂x is unbounded.
Similarly, it is easy to show that the kinetic energy operator −∇2/2 for a single particle is un-
bounded.

5.4.1 Compact operators

In finite dimensions, all linear transformations are bounded, and hence continuous. Furthermore, in
finite dimensions, all bounded and closed sets are compact, see Chapter 3.

Compact linear transformations are “more than continuous”. They are such that closed and bounded
subsets are mapped to compact sets.
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Definition 63: Compact linear transformation

Let V and W be Banach spaces over F, and let T ∈ B(V,W). The linear transformation T is
called compact if the closed unit ball U = {x ∈ V | ‖x‖V ≤ 1} is mapped to a compact subset
T [U] ⊂ W.

5.4.2 Eigenvalues and the spectrum

For finite dimensional Banach spaces, the concept of an eigenvalue of a linear operator is well-known.
If V is a finite-dimensional Banach space over F, and T ∈ L(V) is a bounded linear operator, then the
eigenvalue problem reads:

Find nonzero u ∈ V and λ ∈ V , such that Tu = λu. (5.33)

In finite dimensions, the eigenvalue problem always has a solution if F = C, since it can be reduced to
finding a root of a finite-degree polynomial, and we can appeal to the Funamental Theorem of Algebra
to find our eigenvalue.

In infinite dimensions, however, this is no longer true. Why? The concept of determinant is not
valid for these operators, and one must use more abstract means to show existence of an eigenvalue
problem. The followine example is illustrative:

Example 27: Shift operator

Let V = ℓ2(N;C), the space of square summable sequencess u = (ui) ⊂ C with complex
coefficients. Let T be the shift operator:

T (u0, u1, · · · ) = (0, u0, u1, · · · ).

This operator has no eigenvalues, and it is an instructive exercise to show this. (See the exer-
cises.)

For infinite dimensional Banach spaces, the spectrum of an operator is a generalization of the set
of eigenvalues that we have in the finite dimensional case.

Definition 64: Spectrum and resolvent of bounded operators

Let V be a Banach space over C, and let T ∈ L(V) be a bounded operator. The resolvent of T is
the set

ρ(T ) = {λ ∈ C | T − λI has a bounded inverse} . (5.34)

Here, I is the identity operator, Iu = u. That X has a bounded inverse means that there is an
operator X̃ ∈ L(V) such that X̃X = XX̃ = I on V . We then write X̃ = X−1.

The spectrum of T is defined as:

σ(T ) = {λ ∈ C | T − λI does not have a bounded inverse} . (5.35)

The set ρ(T ) ⊂ C is a closed (in fact compact) set, and σ(T ) ⊂ C is an open set.

The spectrum can be quite general, but at least it is compact, i.e., closed and bounded. For un-
bounded operators the situation is more complicated.
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5.5 Operators over separable Hilbert spaces

Separable Hilbert spaces are central to quantum chemistry: The space of N-electron wavefunctions,
and the subspace of those wavefunctions that have finite kinetic energy are examples. Let us therefore
briefly mention some types of operators that can be encountered.

5.5.1 Bounded operators

Definition 65: Adjoint operator

Let (V, 〈·, ·〉V), (W, 〈·, ·〉W) be separable Hilbert spaces over F, and let T ∈ L(V,W).
The Hermitian adjoint T † ∈ V(W,V) is the unique operator that satisfies

〈w,Tv〉W = 〈T †w, v〉V

for all v ∈ V , w ∈ W.
If H ∈ L(V,V), then H† ∈ L(V,V) is an operator over V . We say that H is Hermitian, or

self-adjoint if H† = H.

The Hermitian adjoint generalizes the corresponding concept for finite dimensional Hilbert spaces.
The Hermitian adjoint may also be defined for unbounded operators, but self-adjointness becomes a
more strict concept.

5.5.2 Projectors

Definition 66: Orthogonal projector

Let V be a separable Hilbert space over F. A orthogonal projector is a Hermitian (self-adjoint)
P ∈ B(V) that satisfies P2 = P.

The set U = P[V] is a closed subspace of V , and any v ∈ V can be uniquely decomposed as

v = v‖ + v⊥,

where v‖ = Pv ∈ U and 〈v‖, v⊥〉 = 0. We have v⊥ = v − v‖, and Pythagoras’ Theorem

‖v‖2 = ‖v‖‖2 + ‖v⊥‖2.

A projection onto the x1x2-plane in R3 is illustrated in Fig. 5.2.

5.5.3 Spectral theorem

Self-adjointness (equal to Hermiticity for bounded operators) allow the important Spectral Theorem,
which for bounded operators goes as follows:
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Figure 5.2: Illustration of projection in R3

Theorem 26: Spectral theorem for bounded self-adjoint operators

Let V be a complex separable Hilbert space, and let T ∈ L(V) be self-adjoint. The spectrum is
real, σ(T ) ⊂ R, and compact. We have

‖T‖L(V) = sup{|λ| | λ ∈ σ(T )|}.

Moreover, T can be decomposed using what is called a spectral measure E on the real line R,
defined on the Borel subsets of R, such that

T =
∫
R

λdE(λ). (5.36)

This integral represents T in terms of a integral over the spectrum of T , where λ represents the
possible spectral values (e.g., eigenvalues), and E(λ) acts as a projection operator that captures
how much of Hilbert space corresponds to each value λ. (For each Borel subset of R, such as
an interval I, the integral

∫
I
dE(λ) is a projection operator that projects onto the eigenspaces,

ina generalized sense.)

The spectral decomposition 5.36 is immensely useful. It can be used to apply functions to the
operator to build new operators with well-defined properties, similarly to what one can do in finite
dimensions:

Theorem 27: Spectral calculus

Let V be a complex separable Hilbert spae, and let T ∈ L(V) be self-adjoint with spectral
decomposition given by Eq. (5.36). Let f : R→ C be any Borel measurable function. We can
define a new operator f (T ) by the formula

f (T ) =
∫
R

f (λ)dE(λ). (5.37)
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Example 28: Solving the time-dependent Schrödinger equation

SupposeV is the complex separable Hilbert space of quantum states of a nonrelativistic quantum
system, and suppose H ∈ L(V) is the governing Hamiltonian operator, i.e., the time-dependent
Schrödinger equation reads

iℏ
d
dt
ψ(t) = Hψ(t), ψ(0) = ψ0.

This is an initial value problem and an ordinary differential equation in Hilbert space. (When
H is written out it often becomes a partial differential equation formulated in Sobolev spaces.)
We have not really defined what we mean by this equation in the infinite dimensional case.
However, the spectral theorem allows us to write

H =
∫
R

λdE(λ),

and we can define a unitary operator by the formula

U(t) = exp(−iHt/ℏ).

This operator is well-defined. Assuming that formal differentiation with respect to time works
out as in finite dimensional spaces, we see that

ψ(t) = U(t)ψ0

solves the time-dependent Schrödinger equation.

For unbounded operators over a separable Hilbert space, self-adjointness is not the same as Her-
miticity. The spectral theorem and spectral calculus can be extended to unbounded operators, but is
more technical.

5.5.4 Unitary operators

Definition 67: Unitary operator

Let V be a separable Hilbert space over F, and let U ∈ L(V). We say that U is unitary if, for
every u, v ∈ V ,

〈Tu,Tv〉 = 〈u, v〉 .

An example of a unitary operator is given in Example ??.

5.5.5 Hilbert Sobolev spaces

The Sobolev spaces Wk,2(Ω):

75



Definition 68: The spaces Hk(Ω) and Hk
0(Ω)

The Sobolev spaces Wk,2(Ω) are denoted Hk(Ω). Similarly, Wk,2
0 (Ω) = Hk

0(Ω). They are Hilbert
spaces with inner product:

〈u, v〉Hk = 〈u, v〉L2 +
∑
α,|α|≤k

〈∂αu, ∂αv〉 , (5.38)

where the sum over α again is a sum over partial derivatives of order ≤ k.
The special case k = 1,

〈u, v〉H1 = 〈u, v〉L2 + 〈∇u,∇v〉L2 . (5.39)

Remark 4: Kinetic energy and Sobolev spaces

In quantum mechanics, the kinetic energy operator is T̂ = −1
2∇2, an unbounded but Hermitian

operator. When supplied with the domain D(T̂ ) = H2
0 , then it is in fact self-adjoint.

Suppose u ∈ H1
0(Ω). Then we see that

〈u, T̂ u〉 = 1
2
〈∇u,∇u〉 < +∞. (5.40)

Here, we assumed that integration by parts is allowed with the weak derivative. Indeed it is
in H1

0(Ω)! Thus, H1
0(Ω) is precisely the set of normalizable wavefuctions that has finite ki-

netic energy and vanish at ∂Ω. This is one of the main steps of the “weak formulation” of the
Schrödinger equation.

5.6 Weak formulation of the Schrodinger equation

We have now amassed a set of tools that allow us to formulate the Schrödinger equation using Sobolev
spaces. This formulation is often called the weak formulation, since we do not require solutions to be
classical in the sense that any derivative that occurs is of the weak type.

For simplicity, we consider a single spinless particle in R3, with Hamiltonian

H = −1
2
∇2 + V (⃗r), (5.41)

where V (⃗r) is a multiplicative potential operator, assumed for the moment to be measurable and in
L1
loc(R

3). For the moment we let the potential be otherwise unknown. The calligraphicH is to distin-
guish it from an actual Hilbert-space operator. It is formal, a term mathematicians use about physics
formulas that are not rigorous mathematics. Sometimes, but not always, it’s just because they don’t
understand it. (It is also a term that physicists use about mathematics they don’t understand, so math-
ematicians and physicists are really not that different.)

Physicists now want to solve the eigenvalue problem of H , i.e., find nonzero ψ : R3 → C and
E ∈ R such that

Hψ = Eψ. (5.42)
This equation is also formal, because we don’t know what kinds of functionsH can operate on.

In order to connect with spectral theory of self-adjoint operators on Hilbert space, we must find
a self-adjoint Ĥ : D(Ĥ) → L2 with domain D(Ĥ) that somehow represents H . If we don’t do this
properly, we may end up “missing” eigenfunctions, or even create complex eigenvalues, which is
nonsense.
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So let ϕ : R3 → C be a C∞0 (R3) function. This is a dense set of L2, and it is typical in functional
analysis to study such well-behaved sets first, then take limits or closures afterwards. With such a
ϕ, Hϕ is a measurable function; ∇2ϕ ∈ C∞0 (R3), and Vϕ is a measurable function (since products of
measurable functions are measurable). RequiringHϕ to be actually in L2 might be too strong, so let
us consider the energy expectation value,

E(ϕ) =
〈ϕ,Hϕ〉
〈ϕ, ϕ〉 . (5.43)

This is now a well-defined function on all nonzero elements of C∞0 (R3). To see this, note that the
denominator is certainly well-defined. The numerator is

〈ϕ,Hϕ〉 =
∫ −1

2
ϕ∇2ϕ + ϕVϕ. (5.44)

Since Vϕ is measurable,

|
∫
|ϕ|2V | ≤ ‖ϕ‖2∞

∫
K
|V | < +∞, (5.45)

where K ⊂ R3 is the support of ϕ. Thus, the numerator is well-defined as well.
We now define the ground-state energy ofH to be

E0 = inf{E(ϕ) | ϕ ∈ C∞0 (R3), ϕ , 0} (5.46)

where the infimum is the greatest lower bound of the function, i.e., E0 is the largest number such that
there is no ϕ that gives E(ϕ) < E0.

As chemists, we know that the elctronic wavefunction has cusps. Thus, the space C∞0 cannot be
large enough to capture our eigenfunctions. We need to extend the energy function to a properly large
space.

Using integration by parts, we write the kinetic energy as

−1
2
〈ϕ,∇2ϕ〉 = 1

2
〈∇ϕ,∇ϕ〉 . (5.47)

This is one out of two locations where the term weak formulation is relevant, because we no longer
differentiate twice, but only once. The second location is the following: We would like to define E on
a complete vector space, because we would like to say something about existence of a minimizer, i.e.,
existence of the eigenfunction of the energy, e.g., since we know about cusps, and also that the exact
eigenfunction does not suddenly come zero, such as is the case withC∞0 . Our enlarged space should be
a subspace of L2 due to the fact that we want a probability interpretation. (See also de denominator.)
The largest subspace of L2 where the kinetic energy is finite is the Sobolev space H1. This space is a
space of weak derivatives.

So our candidate space is H1. What assumptions do we need on V in order to make the potential
energy well-defined? We also need to make sure that if we find a minimizer of H , this will be an
eigenfunction of a self-adjoint operator Ĥ : D(Ĥ) → L2, because this is needed to define quantum
mechanics.

Suppose V is such that it is relatively form-bounded from below by kinetic energy, in the following
manner: Suppose that there exists ε ∈ [0, 1[ and a Cε ≥ 0, such that for all ϕ ∈ H1,

| 〈ϕ,Vϕ〉 | ≤ ε1
2
〈∇ϕ,∇ϕ〉 +Cε‖ϕ‖2. (5.48)

Then we see that
〈ϕ,Hϕ〉 ≥ 1

2
(1 − ε) 〈∇ϕ,∇ϕ〉 −Cε‖ϕ‖2. (5.49)
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Thus,
E(ϕ) ≥ 1

2
(1 − ε)

〈∇ϕ,∇ϕ〉
〈ϕ, ϕ〉 −Cε ≥ −Cε, (5.50)

and therefore the function E is defined on H1 and bounded from below.
Not only that, but we also get

〈ϕ,Hϕ〉 ≤ 1
2

(1 + ε)‖∇ϕ‖2 +Cε‖ϕ‖2 ≤ C′ε‖ϕ‖2H1 , (5.51)

i.e., that E is also bounded above.
It turns out that the following is true:

Lemma 3: Form boundedness of a class of potentials

Let V ∈ L2(R3) + L∞(R3). Then V is relatively form bounded in the sense of Eq. (5.48).

There is a powerful representation theorem for quadratic forms such as h(ϕ) = 〈ϕ,Hϕ〉. Note
that we have proven (or at least outlined the proof) that |h(ϕ)| ≤ C‖ϕ‖H1 for some constant C. Them,
the representation theorem says that there is a unique self-adjoint operator Ĥ : D(Ĥ) → L2 such that
D(Ĥ) ⊂ H1 (a dense subset), and such that for all ϕ ∈ D(Ĥ),

h(ϕ) = 〈ϕ, Ĥϕ〉 . (5.52)

We are almost done, because nowwe can differentiate the function E : H1 → R to form the eigenvalue
equation

Ĥψ = Eψ, E = E(ψ). (5.53)

The question is: what is D(Ĥ)? A remarkable fact is that for V ∈ L2 + L∞, then D(Ĥ) = H2(R3).
Note that even if we have a weak formulation of the Schrödinger equation, that only assumes

one weak derivative in the variational principle, we actually get eigenfunctions that are twice weakly
differentiable!

We summarize as a theorem:

Theorem 28: Weak formulation of the Schrödinger equation

Let V ∈ L2+L∞ (which includes the Coulomb potential of the hydroge atom). Then the operator
Ĥ : H2 → L2 given by

Ĥ = −1
2
∇2 + V (5.54)

is self-adjoint. Its eigenfunctions are critical points of the energy function E : H1 → R given
by

E(ϕ) =
1
2 〈∇ϕ,∇ϕ〉 + 〈ϕ,Vϕ〉

〈ϕ, ϕ〉 . (5.55)

We note in passing, that even for functions ϕ ∈ H1 we can defined ∇2ϕ as a distribution, i.e., a
generalized function. This distribution is such that 〈ϕ,−∇2ϕ〉 = 〈∇ϕ,∇ϕ〉.

We also note that the construction can be generalized to N-electron Hamiltonians with Coulomb
interactions between pairs of electrons and between electrons and nuclei.
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5.7 The Fourier transform

The Fourier transform of a square-integrable function is a very useful tool for the study of quantum
chemistry. It phrases in mathematical terms the idea that a function can be decomposed into plane
wave components with varying weights and frequencies.

5.7.1 Fourier transform for functions over Rn

The Fourier transform is an integral transformation, taking a function into a new function. It is there-
fore an operator between function spaces.

The transform is most easily defined for L1 functions, but can be extended to a much larger class
of functions, e.g., L2 functions.

Definition 69: Fourier transform on L1

We define the Fourier transform of u ∈ L1(Rn) as the linear operator F ∈ L(L1(Rn), L∞(Rn)),
with an auxiliary notation F u = û ∈ L∞(Rn), and given by the formula

û(k) =
1

(2π)n/2

∫
Rn

e−ik·xu(x) dx. (5.56)

We define the inverse Fourier transform of u ∈ L1(Rn) as the function F −1u = ǔ ∈ L∞(Rn)
given by the formula

ǔ(k) =
1

(2π)n/2

∫
Rn

eik·xu(x) dx. (5.57)

As defined, the inverse transform is actually only defined as a transform on L1(Rn), not L∞(Rn).
Therefore it is not actually the inverse. However, it can be extended to the actual inverse on L∞(Rn).

To see that the definitions of û and ǔ as integrals make sense, consider a function u ∈ L1(Rn), and
the integral in Eq. (5.56). This integral exists for all k, since

|û(k)| ≤ 1
(2π)n/2

∫
Rn
|u(x)| dx =

1
(2π)n/2 ‖u‖1. (5.58)

Hence, û ∈ L∞(R3). The same argument applies to Eq. (5.57).
Can we define the Fourier integral for any u ∈ L∞(Rn)? No, just pick the constant function u(x) =

1. The function exp(−ik · x) is measurable but not integrable.
We can, however, extend the definition of the Fourier integral to L2(Rn). The classical way to do

this, is via Plancherel’s Theorem. The result is a unitary operator F on L2(Rn), and in that case F −1

is actually given by Eq. (5.57):
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Theorem 29: Fourier Transform on L2

For u ∈ L2(Rn), the Fourier integral Eq. (5.56) is almost-everywhere defined, and û ∈ L2(Rn).
The Fourier transform is unitary, i.e., ‖u‖2 = ‖û‖2. Moreover, we have the following properties:
Let u, v ∈ L2(Rn). Then,

1. 〈u, v〉2 = 〈û, v̂〉2 = 〈ǔ, v̌〉 unitarity

2. ∂̂αu = (ik)αû partial derivatives

3. û ∗ v = (2π)n/2ûv̂ convolutions

4. u = (û)∨ = (ǔ)∧ (almost everywhere) inverses

Here, α is a multindex α = (α1, · · · , αk), and

∂α =
∂α1

∂xα1
1

∂α2

∂xα2
2
· · · ∂

αn

∂ααn
n
, kα = kα1

1 · · · k
αn
n (5.59)

Example 29: Gaussian

Let A = AT be an n × n real invertible matrix, and consider the funtion u ∈ L2(Rn) given by

u(x) = exp(−xT Ax/2) (5.60)

Then
û(k) = exp(−kT A−1k/2) (5.61)

TODO: Write up some intuition: Smoothness is “dual” to rapid decay. Translation is “dual” to
multiplication by phase factor/plane wave. Scaling by λ is dual to scaling by λ−1.

5.7.2 Fourier series and periodic Fourier transform

Another version of the Fourier transform is for square-integrable functions defined on the “unit torus”
Tn. The 1D unit torus T is the interval [0, 1[ with periodic boundary conditions, i.e., the points 0 and
1 are identified. (This identification means a certain modification of open sets in [0, 1[. Can you
describe it?)

Thus we consider functions in L2(Tn).
We begin with the case n = 1. The Fourier transform of u ∈ L2(T) is defined by

ûk =

∫
T

e−2πikxu(x) dx. (5.62)

It is readily verifiable that this is equivalent to computing the basis expansion coefficients of the
orthonormal set of vectors

ϕk(x) = e2πikx, k ∈ Z. (5.63)

(That this is indeed a basis must be shown.) The map u 7→ û is an isometric isomorphism of L2(T)
and ℓ2(Z). The inverse Fourier transform is the Fourier series

č(x) =
∑
k∈Z

e2πikxck. (5.64)

It is a fact that (û)∨ = u almost everywhere, and that č∧ = c.
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The n-dimensional generalization of the Fourier transform is

ûk =

∫
Tn

e−2πik·xu(x) dx, (5.65)

and the Fourier series is
č(x) =

∑
k∈Zn

e2πik·xck dx. (5.66)

The transform u 7→ c = û is an isometric isomorphism between L2(Tn) and ℓ2(Zn).

Theorem 30: Fourier series

1. 〈u, v〉 = 〈û, v̂〉 = ∑
k∈Zn ûkv̂k unitarity

2. ∂̂αu = (2πi)|α|kαûk partial derivatives TODO:

3. a convolution identity, work it out

4. u = (û)∨ (almost everyhwere), and c = (č)∧ inverses

TODO: Express Fourier series on arbitrary interval/torus, introducing normalization constants.

5.8 Distributions

TODO:Writeup
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Functions of several variables and complex
variables

6.1 Introductory remarks

We now consider functions over Euclidean space, and more generally Banach and Hilbert spaces. We
discuss continuity, differentiability, and integration.

Traditionally, the study of real-valued functions from R to R is called calculus, including the study
of sequences, series, differentiability, maxima, minima, and integration. It is no understatement to
say that calculus is very important to any scientist that deals with calculations of any kind, such as
quantum chemists.

The study of functions f : C→ C is traditionally called complex analysis. The algebraic properties
of the complex plane introduce strong and surprising results that it is easy to fall in love with.

It is conventional to call the study of functions f : Rn → Rm vector calculus. Moreover, the
geometry of R2 and R3 is quite important in science, and this special topic is therefore often singled
out.

Moving beyond vector calculus, we have the study of functions f : V → W, where V and W are
complete normed spaces (Banach spaces). Since quantum mechanics if formulated in Hilbert space,
and since many of the quantum chemistry methods are defined in terms of linear or nonlinear partial
differential equations, the study of calculus in infinite dimensional spaces hold a certain importance.
This topic is often called non-linear functional analysis.

6.2 Single-variable functions
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6.3 Functions of several variables

Recommended reading

Marsden was a giant in textbok authorship at
any level of study. Marsden and Tromba’s
book is an excellent textbook at the under-
graduate level. I find the writing clear and
concise, yet engaging. There are many good
examples and exercises.

6.3.1 Geometry of real-valued functions

Definition 70: Functions of several variables

Let Ω ⊂ Rn, and let f : Ω→ Rm. The set Ω is the domain of f . If n > 1, then f is a function of
several (real) variables. If m = 1, then f is scalar valued, and if m > 1, then f is vector valued.
A function f : Ω ⊂ R→ Rn is called a path in Rn.

The domains Ω that one is usually interested, are sets that have a nonzero interior, i.e., it contains
an open ball of some size, and with a boundary ∂Ω which is sufficiently nice, e.g., piecewise smooth.
(We have not defined this notion.)

A notation which is common in order to specify a function “quickly is”, e.g.,

f : R2 → R3, [x, y] 7→ [sin(x) + cos(y), exp(x + y),−y]. (6.1)

Sometimes the domain and codomain are omitted for brevity.

Example 30

A path in R2:
f : [0, 1]→ R2, t 7→ [t2, exp(−t)] (6.2)

A scalar-valued function:

f : R2 → R, [x, y] 7→ (x2 − y2) exp(−(x2 + y2)) (6.3)
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Tools for visualizing functions: Graphs, level sets (curves, surfaces …), sections.
The graph of f : Ω ⊂ Rn → Rm is the subset

graph( f ) = {(x, f (x)) | x ∈ Ω} ⊂ Rn+m. (6.4)

The level set of f with value c is
{x ∈ Ω | f (c) = c}. (6.5)

In R2, this is typically a (union) of curves, and in in R3, a (union) of surfaces, et.c.
A section is obtained by fixing a hyperplane of Rn and considering f a function only on this plane.
Several exercises.

6.3.2 Differentiability

The idea of the derivative of a function has great use. Locating maxima and minima, understanding
the function’s behavior, and so on.

Many methods of quantum chemistry are defined in terms of critical point conditions, i.e., that
some function f (x) has a vanishing derivative at some point.

To begin with, we define the notion of a partial derivative:

Definition 71: Partial derivative

Let f : Ω ⊂ Rn → R be a scalar-valued function, Ω open. The partial derivatives with respect
to the variable xi are defined by

∂

∂xi
f (x) = lim

h→0

f (x + hei) − f (x⃗)
h

(6.6)

if the limit exists.
In the case f : Ω ⊂ Rn → Rm, the the partial derivatives are defined componentwise, i.e.,

∂

∂xi
f j(x). (6.7)

Note that
x + hei = [x1, x2, · · · , xi + h, · · · , xn]T , (6.8)

i.e., we compute the ordinary derivative of f with respect to xi, imagining all the other variables to be
fixed.

[Examples and exercises]
The existence of partial derivatives initially seems like a good notion of f being differentiable.

However, the following example shows that something is off: We expect a “differentiable function”
to behave somewhat nicely.
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Example 31

let f : R2 → R, (x, y) 7→ x1/3y1/3. Recall, that the cube root of any real number is well defined.
Computing the partial derivatives at (0, 0) gives

∂

∂x
f (0, 0) = lim

h→0

f (h, 0) − f (0, 0)
h

= lim
h→0

0 − 0
h
= 0, (6.9)

and similarly
∂

∂y
f (0, 0) = 0. (6.10)

But f is far from constant near (0, 0). Indeed, consider f along the line y = x,

g(x) = f (x, x) = x2/3. (6.11)

The derivative of g(x) is
g′(x) =

2
3

x−1/3 (6.12)

which does not even exist at x = 0.

The problem seems to be that the partial derivatives only “see” in two more or less arbitrary di-
rections, and not “all directions”.

Definition 72: Differentiable

Let f : Ω ⊂ Rn → Rm, with Ω open. We say that f is differentiable at x0 ∈ Ω if the partial
derivatives all exist at x0, and if

lim
x→x0

‖ f (x) − f (x0) − M(x − x0)‖
‖x − x0‖

= 0, (6.13)

where M = D f (x0), the derivative, is the matrix of partial derivatives,

Mi j =
∂ fi(x0)
∂x j

. (6.14)

and where M(x − x0) is the matrix-vector product applied to x − x0.

Intuitively, f is differentiable at x0 if the function

f (x0) + D f (x0)(x − x0), (6.15)

is a good approximation of f near x0. The graph of this “first order approximation” is a hyperplane
that touches the graph of f at x0.

In our previous example, the first-order function is not a good approximation, and the function
was hence not differentiable.

Theorem 31

If f is differetiable at x0, it is continuous at x0.

It can be difficult to check the definition of differentiability in many cases. We have a helpful
sufficient condition for differentiability:
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Theorem 32: Condition for differentiability

Let f : Ω ⊂ Rn → Rm, with Ω open. Suppose the partial derivatives all exist at x0, and
furthermore that they are all continuous in a neighborhood of x0. Then f is differentiable at x0.

Note that we need continuity not only at the point in question, but a whole ε-ball around it, too.

Definition 73: C1 functions

A function whose partial derivatives exist and are continuous throughout the open domain is
said to be of class C1.

The C1 functions are differentiable, and can be approximated by first-order polynomials.
We list some properties of the derivative, that aids in computing derivatives of complicated func-

tions:

Theorem 33: Properties of the derivative

1. Let f : Ω ⊂ Rn → Rm be differentiable at x0 ∈ Ω, and let c ∈ R. Then h(x) = c f (x) is
differentiable at x0, and

Dh(x0) = cD f (x0). (6.16)

2. Let g : Ω ⊂ Rn → Rm be another function differentiable at x0. Then h(x) = f (x) + g(x)
is differentiable at x0, and

Dh(x0) = D f (x0) + Dg(x0). (6.17)

3. Let f , g : Ω ⊂ Rn → R be scalar-valued functions, differentiable at x0 ∈ Ω. Then
h(x) = f (x)g(x) is differentiable at x)0, and

Dh(x0) = g(x0)D f (x0) + f (x0)Dg(x0). (6.18)

4. As in 3, and additionally that g > 0 thrughout Ω. Then h(x0) = f (x0)/g(x0) is differen-
tiable at x0, and

Dh(x0) =
g(x0)D f (x0) − f (x0)

[g(x0)]2 (6.19)

[Exercises]

Theorem 34: Chain rule

Let Ω ⊂ Rn and Ω′ ⊂ Rm be open sets, and let g : Ω → Rm with g[Ω] ⊂ Ω′. Let f : Ω′ → Ro.
Thus, h = f ◦g : Ω→ Ro is defined. Suppose g is differentiable at x0 ∈ Ω, and f is differentiable
at y0 = f (x0) ∈ Ω′. Then f ◦ h is differentiable at x0 with derivative

D( f ◦ g)(x0) = D f (y0)D f (x0), (6.20)

i.e., the matrix product of the Jacobian matrices.
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Example 32: Function along a path

Let c : R→ R3 be a path tracing out a curve in space, say the flight of a drone with a temperature
sensor. The position c(t) = [x(t), y(t), z(t)]T is the position of the drone at time f . Let f : R3 → R
be a function, say temperature, in space. The temperature registered by the drone as function
of time is h(t) = (g ◦ c)(t) = g(c(t)). The rate of change of h(t) is

dh
dt
=
∂h
∂x
∂x
∂t
+
∂h
∂y
∂y
∂t
+
∂h
∂z
∂z
∂t
. (6.21)

Example 33: Change-of-variables in space

Let f : R3 → R be some scalar-valued function in space, say temperature. let g : Ω ⊂ R2 → R3

be a parameterized surface. g(u, v) = [x(u, v), y(u, v), z(u, v)]T is traces out a two-dimensional
surface patch in R3. The temperature over the surface is h(u, v) = f (g(u, v)). The rate of change
of the temperature along the surface coordinates (u, v) is

[
∂h
∂u

∂h
∂v

]
=

[
∂ f
∂x

∂ f
∂y

∂ f
∂z

] 
∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

∂z
∂u

∂z
∂v

 , (6.22)

written out, we get

∂h
∂u
=
∂ f
∂x

∂x
∂u
+
∂ f
∂y

∂y
∂u
+
∂ f
∂z

∂z
∂u

(6.23)

∂h
∂v
=
∂ f
∂x

∂x
∂v
+
∂ f
∂y
∂y
∂v
+
∂ f
∂z
∂z
∂v

(6.24)

(6.25)

6.3.3 Higher derivatives

Recall the class C1 of functions f : Ω ⊂ Rn → Rm having continuous partial derivatives throughout
their domains. In particular, the derivative is a matrix-valued function,

D f : Ω ⊂ Rn → Rm×n, (6.26)

since we hace n partial derivatives for each of the m component functions fi : Ω→ R.
Suppose now D f ∈ C1, i.e., each of the mn partial derivatives have continuous partial derivatives

throughout Ω. We then say that f ∈ C2, it is twice continuously differentiable. We note that D2 f =
D(D f ) : Ω→ Rm×n×n, by which we indicate a three-index symbol, or tensor,

[D2 f (x0)]i jk =
∂

∂x j

∂

∂xk
fi(x0). (6.27)

It is a theorem, that the mixed partial derivatives are symmetric for C2 functions,

∂2 fi

∂x jxk
=

∂2 fi

∂xkx j
. (6.28)

Iterating this argument, we now define:
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Definition 74: Ck functions

Let f : Ω ⊂ Rn → Rm, with Ω open. We say that f is of class Ck if, for all partial derivatives of
order ≤ k exist and are continuous throughout Ω. The ℓth order derivative is denoted

Dℓ f : Ω→ Rm×n×···×n, (6.29)

with components

Dℓ f (x)i j1 j2··· jℓ =
∂ℓ

∂xi1 · · · ∂xiℓ
fi(x). (6.30)

Accepting that mixed partial derivatives of order 2 are symmetric, it immediately follows that:

Theorem 35

For a function of class Ck, the mixed partial derivatives are all symmetric with respect to ex-
hange of the order of the differentiation.

Example 34

Let f (x, y) = x2 − 4xy. Compute all partial derivatives up to order 2.
The first-order derivatives are

∂ f
∂x
= 2x − 4y,

∂ f
∂y
= −4x. (6.31)

The partial derivatives are continuous, hence f is of class C1. We compute the second-order
derivatives:

∂2 f
∂x2 = 2,

∂2 f
∂x∂y

=
∂2 f
∂y∂x

= −4,
∂2 f
∂y2 = 0. (6.32)

These are also continuous. Hence f is of class C2.
The next derivatives vanish. Hence, f is of class Ck for every k.
We note the symmetry of the partial derivatives in this simple example.

6.3.4 Taylor's Theorem

Polynomials play an important role in analysis, and they are indispensable for any researcher in quan-
tum chemistry. Polynomials help us define gaussian-type orbital basis sets, helps us approximate
difficult functions, derive variational equations, and so on.

For functions of classC1, the derivative gives an approimation to the function “to first order” near
a differentiable point x0. Indeed, for functions of class Ck this can be generalized: The function can
be well-approximated by a multivariable polynomial of degree k near x0.
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Theorem 36: Second-order Taylor formula

et f : Ω ⊂ Rn → R be of class C2. Then we may write

f (x0 + h) = f (x0) + D f (x0)h +
1
2

hT D2 f (x0)h + R2(h, x0), (6.33)

where the remainder satisfies R2(h, x0)/‖h‖2 → 0 as h→ 0, written

R2(h, x0) = O(‖h‖2). (6.34)

The symbol D2 f (x0) is the Hessian of f , the matrix of second-order mixed partial derivatives,
a symmetric matrix.

The above formula can be generalized to polynomials of degree k for Ck functions.
The formula can also be generalized to vector-valued functions whose components are all Ck.

Example 35

Compute the second-order Taylor polynomial of f (x, y) = exp(−x2 − y2) at (0, 0).

D f (x, y) = [−2x f (x, y),−2y f (x, y)], D2 f (x, y) =
[
(4x2 − 2) f (x, y) 4xy f (x, y)

4xy f (x, y) (4y2 − 2) f (x, y)

]
(6.35)

f (0, 0) = 1, D f (0, 0) = [0, 0], D2 f (0, 0) =
[
−2 0
0 −2

]
(6.36)

f (x, y) = 1 − (x2 + y2) + O(x2 + y2). (6.37)

6.3.5 Maxima and minima

Suppose f : Ω ⊂ Rn → R, with Ω being an open domain. We wish to find local minima or maxima
of f :

Definition 75: Local maxima and minima

et f : Ω ⊂ Rn → R, with Ω being an open domain.

1. A local maximum is a point x ∈ Ω such that there exists an open ε-ball Bε(x) with

f (x) ≤ f (y), for all y ∈ Bε(x). (6.38)

2. A local minimum is a point x ∈ Ω such that there exists an open ε-ball Bε(x) with

f (x) ≥ f (y), for all y ∈ Bε(x). (6.39)

For local maxima and minima to be defined, f need not even be continuous.
How do we charaterize local maxima and minima? For a general function f , it can be hard to

verify that a candidate point x ∈ Ω is indeed a local maximum or minimum. If, on the other hand f is
C1, then a local maximum or minimum always has a vanishing derivative. This can be proven from
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the first-order Taylor polynomial approximation. On the other hand, it can happen that the derivative
vanishes, even though we do not have a local maximum or minimum at x.

Definition 76: Critical point, saddle point

Ler f : Ω ⊂ Rn → R be of class C1. Any x ∈ Ω such that D f (x) = 0 is called a critical point of
f . The function value f (x) is called a critical value. If x is not a local maximum or minimum,
we say that x is a saddle point.

If a function is of class C2, the second derivative matrix H = D2 f (x), often called the Hessian,
is a symmetric matrix, since partial derivatives are symmetric. Thus there is a unitary matrix U with
columns ui such that

H = UΛUT =

n∑
i=1

uiλiuT
i , (6.40)

with Λ being a diagonal matrix of eigenvalues. Recall the second-order Taylor approximation

f (x + h) = f (x) +
1
2

hT Hh + o(‖h‖3). (6.41)

Introducing the spectral form of H, the second order term is

1
2

hT Hh =
n∑

i=1

h2
i λi, hi = uT

i h. (6.42)

This term dominates the remainder if and only if all eigenvalues of H are nonzero. (The examples
f (x) = x3, f (x) = −x4, and f (x) = x4 how that this matters, since f ′(0) and f ′′(0) in all cases, so
that the second derivative does not diagnose the critical point.) In this case, the behavior of f near
the critical point is determined by the sign of the eigenvalues. There are precisely three cases: If all
eigenvalues are positive, we have a local minimum, and if all eigenvalues are negative, we have a
local maximum. If we have eigenvalues of both signs, then we have a saddle point.

Theorem 37: Classification of critical points

et f : Ω ⊂ Rn → R, with Ω being an open domain. Let f be of class C2. Let H = D2 f (x) be
the second derivative (Hessian) at a critical point. Assume all eigenvalues of H to be nonzaero.
Then we have:

1. If all the eigenvalues of H are positive, then x is a local minimium.

2. If all the eigenvalues of H are negative, then x is a local maximum.

3. If there are eigenvalues of H with both positive and negative values, then x is a saddle
point.

When there are one or more eigenvalues that are zero, then we need to analyze the problem further
in order to conclude the nature of the critical point.

6.3.6 Integration

The first rigorous definition of a definite integral of a function f : I → R, I = [a, b] ⊂ R, is that of the
Riemann ingeral, ∫ b

a
f (x) dx. (6.43)
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Roughly speaking, one defines the integral as the (signed) area under the curve, and approximates this
by a Riemann sum over areas of N narrow boxes of width ∆x = (b − a)/N,

N∑
i=1

∆x f (xi), (6.44)

where xi is some point in the interval [a+ (i−1)∆x, a+ i∆x], say, the midpoint. As the width ∆x of the
boxes approaches zero (i.e., N → +∞), the sum will be a Cauchy sequence with respect to N, under
some assumptions on f . It then is a convergent sequence, and we define the integral as the limit.

We will not dig deeper into this topic here. I recommend Morgan (elementary), Lindstrom, and
Marsden/Freeman for more details.

Theorem 38: Riemann integrable functions

A function f : [a, b]→ R is Riemann integrable, i.e., the Riemann integral exists and is finite,
if and only if f is bounded on [a, b], and the set of points where f is discontinuous is finite. In
that case, the integral is given by∫ b

a
f (x) dx = lim

N→+∞

b − a
N

N∑
i=1

f (xi), xi = a + (i − 1/2)
b − a

N
.

A more powerful notion of integrability is that of Lebesgue integrability. The main idea here is
that the Riemann sums’ vertical boxes are replaced with horizontal boxes.

The Lebesgue integral requires an understanding of measurable sets and functions. Measure the-
ory is a powerful theory in itself, but for the average quantum chemist, the Riemann integral will do
in most cases.

To read more about measure theory at a pedagogical level, see the book by Lindstrom. Bartle is a
classic text on measure theory.

6.4 The tools of calculus [move/edit this material]

In this section, we collect some of the basic facts about manipulating functions.

6.4.1 Differentiation

Differentiation is craft. Integration is art.
We will often use the Leibniz’ notation for a derivative

f ′(x) =
d
dx

f (x) =
d f (x)

dx
=

d f
dx
. (6.45)

This is indicative of a fraction of infinitesimals, and in fact sometimes they do behave like fractions
…

Product rule:
( f g)′ = f ′g + f g′ (6.46)

Chain rule:
f (x(y))′ = f ′(x(y))y′(x) (6.47)

Using Leibniz,
d
dx

f (y(x)) =
d f
dy

dy
dx
. (6.48)
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Note “cancellation.” Helpful mnemonic device.
Logarithmic differentiation: Sometimes the logarithm of a function is easier to differentiate than

the original function. We can then use

f ′ = f · (ln f )′. (6.49)

6.4.2 Integration

An antiderivative of a function f : I → R is a function F : I → R such that F′ = f . Since the
derivative of a constant is zero, such can be added freely. Another notation for the antiderivative is
the indefinite integral,

F(x) =
∫

f (x) dx +C, (6.50)

with C being a constant.
Antiderivatives are tabulated. But there are basic tricks to evaluate your own.
Variable substitution: Write x = x(y), a function of another variable y.∫ x1

x0

f (x) dx =
∫ y1

y0

f (x(y))
dx
dy

dy. (6.51)

Here, xi = x(yi). Thus, one must be able to invert the function y(x) to get x(y).
Note how the denominator is seemingly “canceled.” Helpful mnemonic device.
Integration by parts: ∫

u′(x)v(x) dx = u(x)v(x) −
∫

u(x)v′(x) dx. (6.52)

Again, an arbitrary constant can be added.
Feynman’s differentiation under the integral sign: Let g(x, α) be a function that depends on some

parameter α in a smooth manner. Suppose that our function to be integrated i

f (x) =
∂

∂α
g(x, α), (6.53)

for some value α. Under mild conditions on g,∫
f (x) dx =

∫
∂

∂α
f (x, α) dx =

∂

∂α

∫
f (x, α) dx. (6.54)

The latter integral may be easier to compute.
Example: Gaussian integral.

6.5 Complex analysis

6.5.1 Complex algebra

Complex numbers go back to the 16th century, when one tried to solve polynomial root equations.
Some equations, like x2 + 1 = 0, did not have roots. On the other hand, by pretending that it does
have roots, let’s call them

√
−1, which was absurd at the time, the Italian mathematician R. Bombelli

(ca. 1560) showed that if one used such numbers systematically, one could come up with algorithms
for finding roots that were actually real! For example, the equation x3 = 15x+4 has 4 as a root, which
Bombelli found as

4 =
3
√

2 +
√
−121 +

3
√

2 −
√
−121. (6.55)
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Descartes famously dubbed the square root of negative numbers imaginary, as he seemed to think they
did not “exist” like the real numbers. The name stuck, and L. Euler himself coined the notation

i =
√
−1. (6.56)

However, the Norwegian mathematician and cartographer C. Wessel was the first to discover the
geometric interpretation of complex numbers as vectors in the plane, around 1797.

Today, complex numbers are everywhere. They are useful in real analysis too: The fundamental
Theorem of Algebra, convergence theory of Taylor series, et.c.

For the quantum chemist why learn complex analysis?
Quantummechanics is complex-valued, so complex numbers are a natural tool. Analytic functions

pop up in many situations. Many of the integrals quantum chemists deal with every day have a natural
setting in complex analysis. Complex functions are useful for wave phenomena and oscillations in
general, since using complex exponentials, a traveling wave obtains a very transparent form,

cos(kx − ωt) = Re exp(i(kx − ωt)). (6.57)

In short, complex analysis deals with differentiable complex functions. Such functions turn out to
be much more than differentiable: they are infinitely differentiable, and they can be expanded locally
in power series. Hence, “analytic”. Moreover, their singularity structire is very rigid, and integration
of such functions have many surprising and useful properties. For example, integration of rational
functions become straightforward.

Recommended reading

This is an excellent and modern textbook in
complex analysis, and an engaging read.
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Recommended reading

This book from 1968 is a classic in mathe-
matical physics. It is not a rigorous mathe-
matics book, but gives you many of the tools
of the trade. There are also many interesting
problems.

Recommended reading

The YouTube channel MathMajor of
Michael Penn of Randolph College,
Virginia, contains excellent videos
on many mathematics topics, and
in particular on complex analysis.
https://www.youtube.com/playlist?list=
PLVMgvCDIRy1wzJcFNGw7t4tehgzhFtBpm
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Figure 6.1: Left: Simply connected open domain in the complex plane. An arbitrary point z is sur-
rounded by a small disc of radius ε. Right: Domain with a hole (not simply connected)

Definition 77: Complex number operations

Let z = x + iy ∈ C.

• Re z = x, Im z = y real and imaginary part

• z̄ = z∗ = x − iy complex conjugate

• z = reiθ, polar form
where eiθ = cos θ + i sin θ Euler’s formula

• Arg z = θ argument/angle/phase

• |z|2 = z̄z = Re z2 + Im z2 = r2 squared modulus/norm

The complex plane can be regarded as R2. Indeed, the modulus |z| =
√

(Re z)2 + (Im z)2 is the
Euclidean norm in R2.

Recall that an ε-ball in R2 is a small disc centered at some (x, y) with radius ε, excluding its
boundary. Thus, convergence of sequences, continuity, the same as in R2

Throughout, we let D ⊂ C be an open domain, i.e., every point z ∈ D is surrounded by some ε-ball.
A simply connected domain is one without any holes. Figure 6.1.
Let f : C → C be a function. By writing f (z) = u(x, y) + iv(x, y), we can regard f a s a pair of

real-valued functions defined in the plane region D.

f (z) ↔ u(x, y) + iv(x, y). (6.58)

What are the properties of such functions? What is distinguishes functions like

f (z) = z3 + 1, f (z) =
1

1 − z
,

from functions like
f (z) = Re z + Im z ?

The first function is clearly a function of the combination z = x + iy, and not of x and y individually.
In an intuitive sense, the first function is “purer” than the second one, it is a “true function of z”.
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It is useful to note that
Re z =

1
2

(z + z̄), Im z =
1
2i

(z − z̄). (6.59)

Thus, seemingly z and z̄ are like independent variables.
Thus, we can rewrite any occurence of Re z and Im z in terms of z and z̄, i.e., the latter can be

used as independent variables (even if they are, strictly speaking, not! When z changes, so do z̄!) For
example,

f (z) = Re z + Im z = (
1
2
+

1
2i

)z + (
1
2
− 1

2i
)z̄. (6.60)

It now looks like f (z) is not a “pure” function of z.
Indeed, it turns out that the “pure” functions are the differentiable ones, while the “mixed” func-

tions are never differentiable. And the “pure” functions are always extremely well-behaved!

Example 36

The perhaps simplest complex functions, and among the most important, are polynomials

p(z) = a0 + a1z + a2z2 + · · · + anzn. (6.61)

The degree of the polynomial is the index of the larges nonzero coefficient an ∈ C. The poly-
nomials are the simplest complex differentiable functions, from which much is derived.

Theorem 39: Fundamental Theorem of Algebra

Any polynomial of degree n can be factorized uniquely (up to reordering of the roots ri) as

p(z) = c(z − r1)(z − r2) · · · (z − rn). (6.62)

6.5.2 Complex differentiability

Complex differentiability is defined in a similar manner as real single-variable differentiability:

Definition 78: Complex differentiability

The function f : U → C, U ⊂open C, is (complex) differentiable at z ∈ U if the limit

lim
h→0

f (z + h) − f (z)
h

= f ′(z) =
d f
dz

(6.63)

exists. The expression h→ 0 means the same as in the R2 case.
If D is an open domain in C, and if f (z) is complex differentiable for all z ∈ D, we say that

f is analytic in D.

The fact that the limit is to exist as h → 0 in the complex sense is much more restrictive than the
previous limit for real functions from R2 → R2. Not only can one approach 0 from any direction, but
the rules of complex multiplication must also be obeyed.
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Example 37: Derivative of monomial

Let us apply the definition of the derivative to f (z) = zn.

f (z + h) = (z + h)n = zn + hnzn−1 + higher order terms. (6.64)

Thus
f (z + h) − f (z)

h
=

hnzn−1 + h.o.t.
h

= nzn−1 + h.o.t., (6.65)

so that the limit becomes
d
dz

znnzn−1. (6.66)

Wewere able to perform the limit just by doing complex algebra. Notably, z ∈ Cwas completely
arbitrary, so the derivative exists everywhere.

Example 38: Derivative of z̄ does not exist

Let us try to see if f (z) = z̄ is differentiable. Let us consider the limit h = δx→ 0 in R.

lim
δx→0

f (x + δx + iy) − f (x + iy)
δx

=
δx
δx
= 1. (6.67)

However, if we allow h = iδy→ 0 instad, with δy ∈ R, then

lim
δy→0

f (x + i(δy + y)) − f (x + iy)
δy

=
−iδy
δy
= −i. (6.68)

Since the two limits are not the same, the complex limit cannot exist, since limits are unique.
This is in fact a very simple example of a continuous function from C → C which is not

differentiable anywhere! Such an exampe is much harder to find for functions R2 → R2.

Theorem 40: Properties of complex derivative

The complex derivative enjoys the same properties as the usual single-variable derivative: Lin-
earity, product rule, quotient rule, and chain rule.

When viewed as a pair of real functions, we get:

Theorem 41: Cauchy-Riemann equations

Let f : D → C, D being a simply connected open set. Let z = z + iy, and write f (z) =
u(x, y) + iv(x, y), with u, v : D → R2 (where D is viewed as a subset of R2). If f is complex
differentiable at z, then

∂u(x, y)
∂x

=
∂v(x, y)
∂y

,
∂u(x, y)
∂y

= −∂v(x, y)
∂x

Cauchy–Riemann equations (6.69)

Conversely, if the Cauchy–Riemann equations are satisfied in D, then f is complex differen-
tiable in D.

It is important here, that we are not talking about a single point, but a whole neighborhood. The
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theorem fails if we omit the last fact.

6.5.3 Series of complex numbers

Definition 79: Series

Given a sequence (zn) of complex numbers, we define the partial sums

S N =

N∑
n=0

zn. (6.70)

If the partual sums converge, lim S N = S ∈ C, then we denote that sum by

S =
∞∑

n=0

zn = z0 + z1 + z2 + · · · (6.71)

Example 39: Geometric series

The geometric series,

f (z) =
1

1 − z
= 1 + z + z2 + · · · for |z| < 1. (6.72)

The function f (z) is complex differentiable at any z , 1:

f (z + h) =
1

1 − z − h
=

1
1 − z

1
1 − h/(1 − z)

=
1

1 − z
(1 +

h
1 − z

+ h.o.t.), (6.73)

so that f ′(z) = 1
(1−z)2 .

We note that f is divergent as z→ 1, this is an example of a pole of f .

Note the slight abuse of notation: The infinite sum is used to denote both the limit of the partial
sums, if it exists, but also the sequence of partial sums.
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Theorem 42: Power series

A power series is a series of the type
∞∑

n=0

anzn. (6.74)

The radius of convergence of the power series is given by

1
R
= lim sup

n→∞
|an|1/n. (6.75)

In particular, R > 0 if {|an|1/n} stays bounded as n grows.
A power series is complex differentiable inside the radius of convergence, and the derivative

is computed term by term,
d
dz

∞∑
n=0

anzn =

∞∑
n=1

nanzn−1. (6.76)

The radius of convergence of the derivative is again R. It follows that a power series is infinitely
differentiable.

Definition 80: Important functions as power series

We define

exp(z) =
∞∑

n=0

1
n!

zn (6.77)

sin(z) =
∞∑

n=0

(−1)n

(2n + 1)!
z2n+1 (6.78)

cos(z) =
∞∑

n=0

(−1)n

(2n!)
z2n. (6.79)

These series are simply complex generalizations of the corresponding real series. The complex
exponential satisfies

exp(x + iy) = exp(x)[cos(y) + i sin(y)]. (6.80)

See also the exercises, where the complex exponential is derived/defined in a different but equiv-
alent way.

6.5.4 Analyticity

Theorem 43: Infinite differentiability

If f is complex differentiable in an ε-ball U of z ∈ C, then it is complex differentiable as many
times as we like the same ball.

A ruly remarkable result about analytic functions is:
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singularity

Figure 6.2: Illustration of convergence disk for two different originsw andw′ for a Taylor/power series
in the presence of a singularity. The series converges inside a disk with radius equal to the distance to
the closest singularity of the function.

Theorem 44: Analytic functions are power series

If f (z) is analytic in an open ball around z, then f (z) can be expanded in a power series there.

Example 40: Geometric series

A standard example is the function

f (z) =
1

1 − z
, (6.81)

with domain D = C \ {1}. The Taylor expansion/power series of f (z) around z = 0 is

f (z) = 1 + z + z2 + · · · , (6.82)

the geometric series. All the an = 1, so |an|1/n = 1, and R = 1 is the convergence radius. For all
|z| < R the series converges. For |z| = 1, we don’t know, and for |z| > R it always diverges.

The Taylor series around oher points w ∈ C can be derived rather easily. The convergence
radius will be R = |w − 1|. See Fig. 6.2.

6.5.5 Complex line integrals

Consider the problem: Given f : D ⊂open C→ C. When does f have an antiderivative (aka primitive),
a function F : D→ C such that F′(z) = f (z)? In real analysis this question results in the fundamental
theorem of analysis, which gives the antiderivative of a real function using the definite integral

F(x) =
∫ x

x0

f (t) dt.

For a complex function, how should one generalize this idea? In the complex plane, there are many
ways to go from a point z0 ∈ D to a point z ∈ D.

This leads to the idea of a complex line integral: the integral of a complex function along a smooth
curve in C, see Fig. 6.3. Such a path as previously considered in the section on vector calculus: Let
I = [a, b] be a closed interval, and let γ : I → C be smooth. Smoothness means, that both the real
and imaginary parts of γ are differentiable as many times as we like in all of I. The graph of γ is now
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Figure 6.3: A smooth path and curve in C.

a curve Γ in C, and we say that γ is a smooth parameterization of Γ. Conversely, we say that a subset
Γ ⊂ C is a smooth curve if there exists a smooth parameterization. There are many parameterizations
of a given smooth curve Γ.

We say that Γ is closed if the endpoints match, so that we have a loop, and Γ is simple if the loop
does not cross itself.

It is important here, that since our integral is supposed to start at one endpoint, and end at another,
the direction of traversal on the curve matters. We say that the curve is oriented.

Definition 81: Complex line integral

Let f : D→ C be continuous, and let Γ be a (piecewise) smooth oriented curve parameterized
by γ : I → C. The complex line integral of f along Γ is now defined as∫

Γ

f (z) dz =
∫

I
f (γ(t))γ′(t) dt, (6.83)

which is independent of parameterization. Note that dz = γ′(t)dt, an infinitesimally small piece
of the curve.

The line integral is a complex integral. The real and imaginary parts exist as Riemann integrals.
The Cauchy–Riemann equations together with Green’s theorem for surface integrals now imply:

Theorem 45: Cauchy theorem

Let f : D → C, where D is a simply connected open domain. Let Γ be a piecewise smooth
simple closed curve in D. Then, ∮

Γ

f (z) dz = 0. (6.84)
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Theorem 46: Path independence, antiderivative

Let f and D be as above. In particular, D is simply connected. If two curves Γ and Γ′ have the
same z0 and z, then the line integrals have the same value, and hence they depend only on the
endpoints. In that case, one may define

F(z) =
∫

zz
0 f (z) dz (6.85)

as the common value, which satisfies F′(z) = f (z) for every z ∈ D.

Fix z0 ∈ D, and choose ε > 0 such that the open disk Bε(z0) ∈ D. Let Γ be the boundary of the
disk, traversed counter-clockwise by some parameterization, e.e., γ(t) = z0 + eitε, 0 ≤ t < 2π.

Theorem 47: Cauchy integral formula

Let the function f : D→ C be complex differentiable, and Bε(z0) ⊂ D as above. Then,

f (z0) =
1

2πi

∮
Γ

f (z)
z − z0

dz. (6.86)

This result is incredibly powerful and profound. The value inside the curve is completely detem-
ined by the values on the curve. Furthermore, Cauchy integral theorem above, generalize the result to
any piecewise smooth simple closed loop inside D that contain z in its interior. The Cauchy integral
formula is still valid for such paths.

The next consequence is the following:

Theorem 48

Let D be simply connected, and let f : D → C be complex analytic in D. Then f is infinitely
many times differentiable, and we have the power series representation

f (z) =
∞∑

n=0

an(z − z0)n, where an =
f (n)(z)

n!
(6.87)

The derivatives are given by the formula

f (n)(z) =
1

2πi

∮
Γ

f (w)
(w − z)n+1 dw. (6.88)

The proof is based on two results; theWeierstrass M-test and Leibniz’ rule for differentiation under
the integral sign. The latter reads:

102



Lemma 4: Leibniz' rule

Let C and D be simply connected domains, and let f : C × D → C be complex differentiable
in each variable separately, i.e.,

∂ f (w, z)
∂z

and
∂ f (w, z)
∂w

both exist. (6.89)

Then
d
dz

∮
∂C

f (w, z) dw =
∮
∂C

∂ f (w, z)
∂z

dw. (6.90)

The fact that a complex differentiable f : D→ C is infinitely differentiable now follows immedi-
ately, when applied to the Cauchy integral formula. To complete the proof, see for example Butkov.

Since power series also are complex differentiable so long as the coefficients do now grow too
fast, we have

Theorem 49

Complex differentiablility of f : D→ C in a simply connected D is equivalent to a convergent
power series of f around z ∈ D

This incredibly powerful statement has great consequences for the study of functions of a real
variable. For example, we know that ez is complex analytic, so for every x ∈ R, e(x + ∆x) can be
developed in a convergent power series for∆x small enough. Conversely, one can show that if we have
a convergent power series in a real variable, then this series is also convergent for a complex variable.
Hence, the real function can be analytically continued into the complex plane, and we may use the
powerful results of complex analysis. We define the exponential function for complex arguments in
this way in the exercies.

6.5.6 Laurent series

Power series in z can be generalized to negative powers. This is very useful, as one can show the
following:

Theorem 50: Functions from Laurent series

Let aLaurent series be given,

+∞∑
n=−∞

cn(z − w)n =

∞∑
n=1

c−n(z − w)−n +

∞∑
n=0

cn(z − w)n, (6.91)

defined as the sum of two power series, in z−1 and z. Then there exists R1 and R2 such that the
positive power series converges to an analytic function for |z| < R1, and the negative power
series converges to an analytic function for |z| > R2. If R2 < R1, we obtain a unique analytic
function in the annulus

D = {z ∈ C | R2 < |z| < R1}, (6.92)

with
cn =

1
2πi

∮
Γ

f (w)
(w − z)n+1 dw. (6.93)
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a pinprick
hole

Figure 6.4: A domain with a single point a missing. The domain is still open, but no longer simply
connected.

6.5.7 Isolated singularities

Let f : D ⊂open C → C be analytic. Let a ∈ D∁, and assume that for some ε > 0, the punctured disc
Ḃε(a) := Bε(a) \ {a} is a subset of D. Thus, D has a single-point “hole” at a, it is “punctured”, see
Fig. 6.4. Since f is not defined at a, this is a singularity. It is also isolated, since a is surrounded by
an open subset in D.

What types of behavior can f have at, or near, a?
Three typical examples are, with a = 0:

sinz
z
,

1
z
, e1/z. (6.94)

The first example has a singularity at a = 0 since the denominator vanishes. But one can easily deduce
that the limit as z→ 0 is 1, and that the function is complex differentiable there. Thus, we can include
z = 0 in the domain. The singularity is removable. It is a fact, that the singularity is removable if f (z)
is bounded (absolute value smaller than some constant) inside some punctured disc around a.

The second example is such that it is dominated by a single a negative power of z near z = 0.
Clearly, the first trick cannot be reused. On the other hand, we obtain an analytic function my multi-
plying with zk for some smallest integer k ≥ 1. Such singularities are called poles of order k, and it
follows that we have a Laurent series expansion

f (z) =
∞∑

n=−k

cn(z − a)n

near a pole of order k, i.e., the negative powers are only finite.
For the third example, this trick does not work. There exist no power zk such that zk f (z) is analytic.

Such singularities are called essential singularities.

6.5.8 Algebraic functions

There is a fourth class of singularity: “square-root type” singularities. We have not discussed algebraic
functions. These are functions defined as roots of polynomials: Let an(w) be complex differentiable
coefficients, and consider the equation

F(w, z) = a0(w) + a1(w)z + · · · + an(w)zn = 0. (6.95)
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Under mild conditions on the coefficients, we can solve for z using the implicit function theorem and
the fundamental theorem of algebra to find n functions fi(w) such that

F(w, fi(w)) = 0. (6.96)

The function f is called algebraic, and in general there are n solutions to F = 0, so that we have n
solution functions! These are called branches of the same function.

Example 41: A simple algebraic function

Consider the equation
z2 + w = 0 (6.97)

which as the solution
z(w) = w1/2. (6.98)

We know that there are two distinct complex square roots. Each square root defines a branch,
and they coincide at w = 0, a branch point.

Each branch can be made complex analytic in any simply connected region that excludes the
origin, i.e., we can draw a (possibly wiggly) line from the origin to infinity. This line is called
a branch cut.

Algebraic functions are very useful. For example, the eigenvalues of a matrix dependent on a
complex parameter,

C(z) = A + zB (6.99)

are roots of the characteristic polynomial of C(z), and hence algebraic functions! Thus, the study of
algebraic functions is relevant for quantum mechanical perturbation theory.

We are of course only scratching the surface here. Butkov is a good place to start for learning more
on algebraic functions, branch points etc.
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